已知A,B,C三點不在同一條直線上,O是平面ABC內(nèi)一定點,P是△ABC內(nèi)的一

動點,若,則直線AP一定過△ABC的(    )

A.重心             B.垂心             C.外心             D.內(nèi)心

 

【答案】

A

【解析】

試題分析:取BC的中點D,連接AD,因為,所以,又λ∈[0,+∞),所以P點在射線AD上,故P的軌跡過△ABC的重心。故選A。

考點:向量的運算;共線向量;三角形的五心。

點評:本題主要考查向量的運算法則、向量共線的充要條件、三角形的重心定義。設出BC的中點D,利用向量的運算法則化簡 ,據(jù)向量共線的充要條件得到P在三角形的中線上是做此題的關鍵。三角形的重心定義:三條中線的交點。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知A、B、C三點不共線,且點O滿足
OA
+
OB
+
OC
=0
,則下列結論正確的是( 。
A、
OA
=
1
3
AB
+
2
3
BC
B、
OA
=
2
3
AB
+
1
3
BC
C、
OA
=-
1
3
AB
-
2
3
BC
D、
OA
=-
2
3
AB
-
1
3
BC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A、B、C三點不共線,O是平面ABC外的任一點,下列條件中能確定點M與點A、B、C一定共面的是(  )
A、
OM
=
OA
+
OB
+
OC
B、
OM
=2
OA
-
OB
-
OC
C、
OM
=
OA
+
1
2
OB
+
1
3
OC
D、
OM
=
1
3
OA
+
1
3
OB
+
1
3
OC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A、B、C三點不共線,M、A、B、C四點共面,則對平面ABC外的任一點O,有
OM
=
1
2
OA
+
1
3
OB
+t
OC
,則t=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A,B,C三點不共線,對平面ABC外一點O,給出下列命題:
OM
=
1
3
OA
+
1
3
OB
+
1
3
OC
;       ②
OM
=
OA
-
OB
+
OC
;
OM
=
OA
+2
OB
+
AC
;          ④
OM
=2
OA
+
OB
+
AC

其中,能推出M,A,B,C四點共面的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A,B,C三點不共線,點O是平面ABC外一點,則在下列條件中,能得到點M與A,B,C一定共面的一個條件為
. (填序號)
OM
=
1
2
OA
+
1
2
OB
+
1
2
OC
;②
OM
=2
OA
-
OB
-
OC

OM
=
OA
+
OB
+
OC
;④
OM
=
1
3
OA
-
1
3
OB
+
OC

查看答案和解析>>

同步練習冊答案