在北緯
緯線上有A,B兩點,設(shè)該緯線圈上A,B兩點的劣弧長為
,(R為地球半徑),則A,B兩點間的球面距離為__________________.
設(shè)北緯
緯線圈的半徑為r,則r=
,設(shè)
為北緯
緯線圈的圓心,
,
為等邊三角形,
,所以A,B兩點的球面距離等于
。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知P在矩形ABCD邊DC上,AB=2,BC=1,F(xiàn)在AB上且DF ⊥AP,垂足為E,將△ADP沿AP折起.使點D位于D′位置,連D′B、D′C得四棱錐D′—ABCP.
(I)求證D′F⊥AP;
(II)若PD=1并且平面D′AP⊥平面ABCP,求四棱錐D′—ABCP的體積
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
在四棱錐
中,底面
是一直角梯形,
,
,
底面
.
(1)求三棱錐
的體積;
(2)在
上是否存在一點
,使得
平面
,若存在,求出
的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,在四棱錐
P-
ABCD中,則面
PAD⊥底面
ABCD,側(cè)棱
PA=
PD=
,底面
ABCD為直角梯形,其中
BC∥
AD,
AB⊥
AD,
AD=2
AB=2
BC=2,
O為
AD中點。
(Ⅰ)求證:
PO⊥平面
ABCD;
(Ⅱ)求異面直線
PD與
CD所成角的大。
(Ⅲ)線段
AD上是否存在點
Q,使得它到平面
PCD的距離為
?若存在,求出
的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,在直三棱柱
中,平面
側(cè)面。
(Ⅰ)求證:
;
(Ⅱ)若直線
AC與平面
A1BC所成的角為
θ,二面角
A1-
BC-
A的大小為
φ,試判斷
θ與
φ的大小關(guān)系,并予以證明。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在如圖所示的多面體中,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,EC⊥AC,EF∥AC,AB=
,EF=EC=1,
⑴求證:平面BEF⊥平面DEF;
⑵求二面角A-BF-E的大小。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖3:在空間四邊形ABCD中,AC=AD,BC=BD,且E是CD的中點.
(1)求證:平面ABE
平面BCD;
(2)若F是AB的中點,BC=AD,且AB=8,AE=10,求EF的長.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知平行六面體
的底面ABCD是菱形,且
,(1)證明:
;
(II)假定CD=2,
,記面
為α,面CBD為β,求二面角α -BD -β的平面角的余弦值;
(III)當(dāng)
的值為多少時,能使
?請給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
長方體各面上的對角線所確定的平面?zhèn)數(shù)是( )
查看答案和解析>>