(本小題滿分12分)
拋物線
的焦點與雙曲線
的右焦點重合.
(Ⅰ)求拋物線的方程;
(Ⅱ)求拋物線的準(zhǔn)線與雙曲線的漸近線圍成的三角形的面積.
(Ⅰ)
(Ⅱ)
試題分析:(Ⅰ)因為雙曲線方程為
,所以
,
∴
,
, ……2分
∴
, ……4分
∴拋物線的方程為
. ……6分
(Ⅱ)因為
,
雙曲線的準(zhǔn)線方程為
, ……8分
又拋物線的準(zhǔn)線方程為
, ……9分
令
,
,
設(shè)拋物線的準(zhǔn)線與雙曲線的準(zhǔn)線的交點為
,
則
, ……11分
∴
. ……12分
點評:雙曲線、橢圓和拋物線經(jīng)常結(jié)合出題,它們之間既有區(qū)別又有聯(lián)系,要靈活應(yīng)用,另外,雙曲線的漸近線是雙曲線特有的,所以經(jīng)?疾,既要會求雙曲線的漸近線,又要會用雙曲線的漸近線.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知雙曲線
的一條漸近線經(jīng)過點
,則該雙曲線的離心率為___________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在
中 ,
,以點
為一個焦點作一個橢圓,使這個橢圓
的另一焦點在
邊上,且這個橢圓過
兩點,則這個橢圓的焦距長為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(13分) 如圖,已知橢圓
的兩個焦點分別為
,斜率為k的直線l過左焦點F
1且與橢圓的交點為A,B與y軸交點為C,又B為線段CF
1的中點,若
,求橢圓離心率e的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知雙曲線的方程為
,過左焦點F
1作斜率為
的直線交雙曲線的右支于點P,且
軸平分線段F
1P,則雙曲線的離心率是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題12分)已知橢圓
的離心率為
,
為橢圓的右焦點,
兩點在橢圓
上,且
,定點
。
(1)若
時,有
,求橢圓
的方程;
(2)在條件(1)所確定的橢圓
下,當(dāng)動直線
斜率為k,且設(shè)
時,試求
關(guān)于S的函數(shù)表達式f(s)的最大值,以及此時
兩點所在的直線方程。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知函數(shù)
的圖像與直線
恰有三個公共點,則實數(shù)m的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
雙曲線
上有一點P到左準(zhǔn)線的距離為
,則P到右焦點的距離為
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知雙曲線
的兩個焦點為
,
為坐標(biāo)原點,點
在雙曲線上,且
,若
、
、
成等比數(shù)列,則
等于
查看答案和解析>>