已知等差數(shù)列中滿足
,
.
(1)求和公差
;
(2)求數(shù)列的前10項的和.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為等差數(shù)列,
,其前n項和為
,若
,
(1)求數(shù)列的通項;(2)求
的最小值,并求出相應(yīng)的
值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列{bn}滿足bn+2=-bn+1-bn(n∈N*),b2=2b1.
(1)若b3=3,求b1的值;
(2)求證數(shù)列{bnbn+1bn+2+n}是等差數(shù)列;
(3)設(shè)數(shù)列{Tn}滿足:Tn+1=Tnbn+1(n∈N*),且T1=b1=-,若存在實數(shù)p,q,對任意n∈N*都有p≤T1+T2+T3+…+Tn<q成立,試求q-p的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列前n項和
=
(
), 數(shù)列
為等比數(shù)列,首項
=2,公比為q(q>0)且滿足
,
,
為等比數(shù)列.
(1)求數(shù)列,
的通項公式;
(2)設(shè),記數(shù)列
的前n項和為Tn,,求Tn。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
稱滿足以下兩個條件的有窮數(shù)列為
階“期待數(shù)列”:
①;②
.
(1)若等比數(shù)列為
階“期待數(shù)列”,求公比q及
的通項公式;
(2)若一個等差數(shù)列既是
階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項公式;
(3)記n階“期待數(shù)列”的前k項和為
:
(i)求證:;
(ii)若存在使
,試問數(shù)列
能否為n階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若數(shù)列滿足
,則稱數(shù)列
為“平方遞推數(shù)列”.已知數(shù)列
中,
,點
在函數(shù)
的圖象上,其中
為正整數(shù).
(Ⅰ)證明數(shù)列是“平方遞推數(shù)列”,且數(shù)列
為等比數(shù)列;
(Ⅱ)設(shè)(Ⅰ)中“平方遞推數(shù)列”的前項積為
,即
,求
;
(Ⅲ)在(Ⅱ)的條件下,記,求數(shù)列
的前
項和
,并求使
的
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)遞增等差數(shù)列的前n項和為
,已知
,
是
和
的等比中項.
(l)求數(shù)列的通項公式;
(2)求數(shù)列的前n項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前
項和為
,
,
是
與
的等差中項(
).
(Ⅰ)證明數(shù)列為等比數(shù)列;
(Ⅱ)求數(shù)列的通項公式;
(Ⅲ)是否存在正整數(shù),使不等式
(
)恒成立,若存在,求出
的最大值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com