(Ⅰ)當(dāng)a=-1時,f(x)=lnx+x+
-1,x∈(0,+∞),
所以f′(x)=
+1-
,因此,f′(2)=1,
即曲線y=f(x)在點(2,f(2))處的切線斜率為1,
又f(2)=ln2+2,y=f(x)在點(2,f(2))處的切線方程為y-(ln2+2)=x-2,
所以曲線,即x-y+ln2=0;
(Ⅱ)因為
f(x)=lnx-ax+-1,
所以
f′(x)=-a+=
-,x∈(0,+∞),
令g(x)=ax
2-x+1-a,x∈(0,+∞),
(1)當(dāng)a=0時,g(x)=-x+1,x∈(0,+∞),
所以,當(dāng)x∈(0,1)時,g(x)>0,
此時f′(x)<0,函數(shù)f(x)單調(diào)遞減;
(2)當(dāng)a≠0時,由g(x)=0,
即ax
2-x+1-a=0,解得x
1=1,x
2=
-1.
①當(dāng)a=
時,x
1=x
2,g(x)≥0恒成立,
此時f′(x)≤0,函數(shù)f(x)在(0,+∞)上單調(diào)遞減;
②當(dāng)0<a<
時,
x∈(0,1)時,g(x)>0,此時f′(x)<0,函數(shù)f(x)單調(diào)遞減,
x∈(1,
-1)時,g(x)<0,此時f′(x)>0,函數(shù)f(x)單調(diào)遞增,
x∈(
-1,+∞)時,g(x)>0,此時f′(x)<0,函數(shù)f(x)單調(diào)遞減;
③當(dāng)a<0時,由于
-1<0,
x∈(0,1)時,g(x)>0,此時f′(x)<0函數(shù)f(x)單調(diào)遞減;
x∈(1,+∞)時,g(x)<0此時函數(shù)f′(x)>0函數(shù)f(x)單調(diào)遞增.
綜上所述:
當(dāng)a≤0時,函數(shù)f(x)在(0,1)上單調(diào)遞減;
函數(shù)f(x)在(1,+∞)上單調(diào)遞增
當(dāng)a=
時,函數(shù)f(x)在(0,+∞)上單調(diào)遞減
當(dāng)0<a<
時,函數(shù)f(x)在(0,1)上單調(diào)遞減;
函數(shù)f(x)在(1,
-1)上單調(diào)遞增;
函數(shù)f(x)在(
-1,+∞)上單調(diào)遞減.