【題目】某商場(chǎng)經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計(jì),顧客采用的付款期數(shù)的分布列為:

1

2

3

4

5

0.4

0.2

0.2

0.1

0.1

商場(chǎng)經(jīng)銷該商品,可采用不同形式的分期付款,付款的期數(shù)(單位: )與商場(chǎng)經(jīng)銷一件商品的利潤(rùn)(單位:元)滿足如下關(guān)系:

(Ⅰ)若記事件“購(gòu)買該商品的3位顧客中,至少有1位采用一次性全額付款方式”為,試求事件的概率;

(Ⅱ)求商場(chǎng)經(jīng)銷一件商品的利潤(rùn)的分布列及期望

【答案】(Ⅰ)(Ⅱ)

【解析】試題分析:(Ⅰ)由;(Ⅱ)先計(jì)算, ,可得分布列,并求得期望.

試題解析:(Ⅰ)因?yàn)?/span> “購(gòu)買該商品的3位顧客中,至少有1位采用一次性全額付款方式”,所以 “購(gòu)買該商品的3位顧客中無(wú)人采用一次性全額付款方式”.

,得

(Ⅱ)商場(chǎng)經(jīng)銷一件商品的利潤(rùn)的可能取值為元, 元, 元.

,

,

的分布列為:

(元).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)水輪的半徑為4m,水輪圓心O距離水面2m,已知水輪每分鐘轉(zhuǎn)動(dòng)5圈,如果當(dāng)水輪上點(diǎn)P從水中浮現(xiàn)時(shí)(圖中點(diǎn)p0)開(kāi)始計(jì)算時(shí)間.

(1)將點(diǎn)p距離水面的高度z(m)表示為時(shí)間t(s)的函數(shù);
(2)點(diǎn)p第一次到達(dá)最高點(diǎn)大約需要多少時(shí)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖F1F2是橢圓C1+y2=1與雙曲線C2的公共焦點(diǎn),A、B分別是C1、C2在第二、四象限的公共點(diǎn),若四邊形AF1BF2為矩形,則C2的離心率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用數(shù)學(xué)歸納法證明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12 時(shí),由n=k的假設(shè)到證明n=k+1時(shí),等式左邊應(yīng)添加的式子是(
A.(k+1)2+2k2
B.(k+1)2+k2
C.(k+1)2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2ax﹣2alnx(a∈R),則下列說(shuō)法正確的是 ①當(dāng)a<0時(shí),函數(shù)y=f(x)有零點(diǎn);
②若函數(shù)y=f(x)有零點(diǎn),則a<0;
③存在a>0,函數(shù)y=f(x)有唯一的零點(diǎn);
④若函數(shù)y=f(x)有唯一的零點(diǎn),則a≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知PA垂直于矩形ABCD所在的平面,M,N分別是AB,PC的中點(diǎn),若∠PDA=45°,
(1)求證:MN∥平面PAD且MN⊥平面PCD.
(2)探究矩形ABCD滿足什么條件時(shí),有PC⊥BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司研究開(kāi)發(fā)了一種新產(chǎn)品,生產(chǎn)這種新產(chǎn)品的年固定成本為150萬(wàn)元,每生產(chǎn)千件,需另投入成本為 (萬(wàn)元), .每件產(chǎn)品售價(jià)為500元.該新產(chǎn)品在市場(chǎng)上供不應(yīng)求可全部賣完.

(Ⅰ)寫(xiě)出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量千件)的函數(shù)解析式;

(Ⅱ)當(dāng)年產(chǎn)量為多少千件時(shí),該公司在這一新產(chǎn)品的生產(chǎn)中所獲利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)2009年至2015年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如表:

年份

2009

2010

2011

2012

2013

2014

2015

年份代號(hào)t

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9


(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2009年至2015年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2017年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:
參考數(shù)據(jù):(﹣3)×(﹣1.4)+(﹣2)×(﹣1)+(﹣1)×(﹣0.7)+1×0.5+2×0.9+3×1.6=14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某問(wèn)答游戲的規(guī)則是:共5道選擇題,基礎(chǔ)分為50分,每答錯(cuò)一道題扣10分,答對(duì)不扣分.試分別用列表法、圖象法、解析法表示一個(gè)參與者的得分y與答錯(cuò)題目道數(shù)x(x∈{0,1,2,3,4,5})之間的函數(shù)關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案