【題目】已知正方形的邊長為1,如圖所示:

1在正方形內(nèi)任取一點求事件的概率;

2用芝麻顆粒將正方形均勻鋪滿,經(jīng)清點,發(fā)現(xiàn)芝麻一共56粒,有44粒落在扇形內(nèi),請據(jù)此估計圓周率的近似值精確到0.001

【答案】1;2

【解析】

試題分析:1根據(jù)題意畫出滿足條件的點的圖形,即可利用幾何概型求解相應的概率;2由題意,可得正方形內(nèi)的粒芝麻顆粒中有粒落在扇形內(nèi),利用古典概型的概率公式,即可估算結論.

試題解析:1如圖,在邊長為1的正方形內(nèi)任取一點,滿足條件的點落在扇形內(nèi)圖中陰影部分,由幾何概型概率計算公式,有:

故事件發(fā)生的概率為

2正方形內(nèi)的56粒芝麻顆粒中有44粒落在扇形內(nèi),頻率為

用頻率估計概率,由1,

的近似值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】2017年天貓五一活動結束后,某地區(qū)研究人員為了研究該地區(qū)在五一活動中消費超過3000元的人群的年齡狀況,隨機在當?shù)叵M超過3000元的群眾中抽取了500人作調查,所得概率分布直方圖如圖所示:記年齡在, , 對應的小矩形的面積分別是,且.

(1)以頻率作為概率,若該地區(qū)五一消費超過3000元的有30000人,試估計該地區(qū)在五一活動中消費超過3000元且年齡在的人數(shù);

(2)計算在五一活動中消費超過3000元的消費者的平均年齡;

(3)若按照分層抽樣,從年齡在, 的人群中共抽取7人,再從這7人中隨機抽取2人作深入調查,求至少有1人的年齡在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司過去五個月的廣告費支出與銷售額單位:萬元之間有下列對應數(shù)據(jù):

2

4

5

6

8

40

60

50

70

工作人員不慎將表格中的第一個數(shù)據(jù)丟失.已知呈線性相關關系,且回歸方程為,則下列說法銷售額與廣告費支出正相關;丟失的數(shù)據(jù)表中為30;該公司廣告費支出每增加1萬元,銷售額一定增加萬元;若該公司下月廣告投入8萬元,則銷售

額為70萬元.其中,正確說法有

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)設,的單調區(qū)間;

(2)若處取得極大值,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的離心率,圓與直線相切,為坐標原點

1求橢圓的方程;

2過點任作一直線交橢圓兩點,記,若在線段上取一點,使得,試判斷當直線運動時,點是否在某一定直一上運動?若是,請求出該定直線的方程;若不是,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人練習罰球,每人練習6組,每組罰球20個,命中個數(shù)的莖葉圖如下:

1求甲命中個數(shù)的中位數(shù)和乙命中個數(shù)的眾數(shù);

2通過計算,比較甲乙兩人的罰球水平.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線).

1求直線經(jīng)過的定點坐標;

2若直線負半軸于,交軸正半軸于為坐標系原點,的面積為,求的最小值并求此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某超市經(jīng)營一批產(chǎn)品,在市場銷售中發(fā)現(xiàn)此產(chǎn)品在30天內(nèi)的日銷售量P(件)與日期)之間滿足,已知第5日的銷售量為55件,第10日的銷售量為50件。

(1)求第20日的銷售量; (2)若銷售單價Q(元/件)與的關系式為,求日銷售額的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

1求函數(shù)的單調區(qū)間;

2函數(shù)在定義域內(nèi)存在零點,求的取值范圍

3,當時,不等式恒成立,求的取值范圍

查看答案和解析>>

同步練習冊答案