已知函數(shù)
(1)求函數(shù)f(x)在(0,2)上的最小值;
(2)設(shè)g(x)=﹣x2+2mx﹣4,若對(duì)任意x1∈(0,2),x2∈[1,2],不等式f(x1)≥g(x2)恒成立,求實(shí)數(shù)m的取值范圍.
解:(1)求導(dǎo)函數(shù),可得
∵0<x<2,
令f′(x)>0,可得1<x<2;
令f?(x)>0,可得0<x<1
∴函數(shù)f(x)在(0,2)上的單調(diào)遞增區(qū)間是(1,2),單調(diào)遞減區(qū)間是(0,1)
∴函數(shù)f(x)在x=1處,取得極小值,且為最小值
(2)由(1)知,f(x)min=
對(duì)任意x1∈(0,2),x2∈[1,2],不等式f(x1)≥g(x2)恒成立,
等價(jià)于﹣x2+2mx﹣4,x∈[1,2]恒成立.
,x∈[1,2]恒成立.
,當(dāng)且僅當(dāng),即時(shí)取等號(hào)

∴實(shí)數(shù)m的取值范圍為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
x2-1,x<-1
|x|+1,-1≤x≤1
3x
+3,x>1
編寫一程序求函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省青島市高三3月統(tǒng)一質(zhì)量檢測(cè)考試(第二套)理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

1的最;

2當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱為函數(shù)的保值區(qū)間.設(shè),試問函數(shù)上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆湖南省高一12月月考數(shù)學(xué) 題型:解答題

(本題滿分14分)定義在D上的函數(shù),如果滿足;對(duì)任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界。

已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請(qǐng)說明理由;

(2)若函數(shù)上是以3為上界函數(shù)值,求實(shí)數(shù)的取值范圍;

(3)若,求函數(shù)上的上界T的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間數(shù)學(xué)公式上的函數(shù)值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省徐州市銅山縣棠張中學(xué)高三(上)周練數(shù)學(xué)試卷(理科)(11.3)(解析版) 題型:解答題

已知函數(shù)
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間上的函數(shù)值的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案