(本小題滿分14分)
已知各項均為正數(shù)的數(shù)列{an}前n項和為Sn,(p – 1)Sn = p2 – an,n ∈N*,p > 0且p≠1,數(shù)列{bn}滿足bn = 2logpan.
(Ⅰ)若p =,設數(shù)列的前n項和為Tn,求證:0 < Tn≤4;
(Ⅱ)是否存在自然數(shù)M,使得當n > M時,an > 1恒成立?若存在,求出相應的M;若不存在,請說明理由.
(Ⅰ)解:由(p – 1)Sn = p2 – an (n∈N*) ①
由(p – 1)Sn – 1 = p2 – an – 1 ②
① – ②得(n≥2)
∵an > 0 (n∈N*)
又(p – 1)S1 = p2 – a1,∴a1 = p
{an}是以p為首項,為公比的等比數(shù)列
an = p
bn = 2logpan = 2logpp2 – n
∴bn = 4 – 2n ………… 4分
證明:由條件p =得an = 2n – 2
∴Tn = ①
②
① – ②得
= 4 – 2 ×[來源:Z|xx|k.Com]
= 4 – 2 ×
∴Tn =………… 8分
Tn – Tn – 1 =
當n > 2時,Tn – Tn – 1< 0
所以,當n > 2時,0 < Tn≤T3 = 3
又T1 = T2 = 4,∴0 < Tn≤4.…………10分
(Ⅱ)解:若要使an > 1恒成立,則需分p > 1和0 < p < 1兩種情況討論
當p > 1時,2 – n > 0,n < 2
當0 < p < 1時,2 – n < 0,n > 2
∴當0 < p < 1時,存在M = 2
當n > M時,an > 1恒成立.………… 14分
【解析】略
科目:高中數(shù)學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關于第天的函數(shù)關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com