【題目】已知關(guān)于的方程有實數(shù)根b.
(1)求實數(shù)的值.
(2)若復數(shù)滿足. 求z為何值時,|z|有最小值,并求出|z|的最小值.
【答案】(1);(2) 當z=1﹣i時,|z|有最小值且|z|min=.
【解析】試題分析:(1)復數(shù)方程有實根,方程化簡為(a、b∈R),利用復數(shù)相等,即,解方程組即可.
(2)先把a、b代入方程,同時設(shè)復數(shù),化簡方程,根據(jù)表達式的幾何意義,方程表示圓,
再數(shù)形結(jié)合,求出z,得到|z|.
試題解析:解:(1)∵是方程的實根
∴(2分)
∴解得(4分)
(2)設(shè),其對應(yīng)點為
由得: 即
∴點的軌跡是以O1(-1,1)為圓心, 為半徑的圓,如圖所示(8分)
當點在OO1的連線上時, 有或∵
∴當時, 有最小值,且(10分)
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷函數(shù)的單調(diào)性,并用定義證明;
(3)當時, 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有4個不同的球,4個不同的盒子,把球全部放入盒子內(nèi).
(1)共有幾種放法?
(2)恰有1個空盒,有幾種放法?
(3)恰有2個盒子不放球,有幾種放法?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)滿足
(1)求的解析式;(2)作出函數(shù)的圖像,并寫出其單調(diào)區(qū)間;
(3)求在區(qū)間()上的最小值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是上的偶函數(shù).
(1)求實數(shù)的值;
(2)判斷并證明函數(shù)在上單調(diào)性;
(3)求函數(shù)在上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個袋中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4.
(1)從袋中隨機取出兩個球,求取出的球的編號之和不大于4的概率.
(2)先從袋中隨機取一個球,該球的編號為m,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為n,求n<m+2的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】截止到1999年底,我國人口約為13億,若今后能將人口平均增長率控制在1%,經(jīng)過x年后,我國人口為y(單位:億).
(1)求y與x的函數(shù)關(guān)系式y=f(x);
(2)求函數(shù)y=f(x)的定義域;
(3)判斷函數(shù)f(x)是增函數(shù)還是減函數(shù),并指出函數(shù)增減的實際意義.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)在某一個周期內(nèi)的圖象時,列表并填入的數(shù)據(jù)如下表:
x | x1 | x2 | x3 | ||
ωx+φ | 0 | π | 2π | ||
Asin(ωx+φ) | 0 | 2 | 0 | -2 | 0 |
(1)求x1,x2,x3的值及函數(shù)f(x)的表達式;
(2)將函數(shù)f(x)的圖象向左平移π個單位,可得到函數(shù)g(x)的圖象,求函數(shù)y=f(x)·g(x)在區(qū)間的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com