【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,并且在兩種坐標(biāo)系中取相同的長(zhǎng)度單位.若將曲線為參數(shù))上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的(縱坐標(biāo)不變),然后將所得圖象向右平移2個(gè)單位,再向上平移3個(gè)單位得到曲線C.直線l的極坐標(biāo)方程為.

1)求曲線C的普通方程;

2)設(shè)直線l與曲線C交于A,B兩點(diǎn),與x軸交于點(diǎn)P,線段AB的中點(diǎn)為M,求.

【答案】1;(2.

【解析】

1)根據(jù)題意得到為參數(shù))后,消去參數(shù)即可得到曲線C的普通方程;

2)將直線的方程化為參數(shù)方程的標(biāo)準(zhǔn)形式并代入到圓的方程,利用參數(shù)的幾何意義可解得結(jié)果.

1)將曲線為參數(shù))上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的(縱坐標(biāo)不變),得到, 然后將所得圖像向右平移2個(gè)單位,再向上平移3個(gè)單位得到為參數(shù)),消去參數(shù)得圓C的普通方程為.

2)由,即,因?yàn)?/span>,所以,

即直線l的直角坐標(biāo)方程為:,傾斜角為,點(diǎn),

設(shè)直線l的參數(shù)方程為,代入圓C的普通方程并整理得:,

因?yàn)?/span>,設(shè)、兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為,,則點(diǎn)對(duì)應(yīng)的參數(shù)為,

由韋達(dá)定理得,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形為菱形,且,取中點(diǎn)為.現(xiàn)將四邊形沿折起至,使得.

)求證:平面;

)求二面角的余弦值;

)若點(diǎn)滿足,當(dāng)平面時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線交橢圓于兩點(diǎn),.

1)若,且點(diǎn)滿足,證明:點(diǎn)不在橢圓上;

2)若橢圓的左,右焦點(diǎn)分別為,,直線與線段和橢圓的短軸分別交于兩個(gè)不同點(diǎn),且,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】.對(duì)于nN*n2),定義一個(gè)如下數(shù)陣:,其中對(duì)任意的1in,1jn,當(dāng)i能整除j時(shí),aij1;當(dāng)i不能整除j時(shí),aij0.設(shè)

(Ⅰ)當(dāng)n6時(shí),試寫(xiě)出數(shù)陣A66并計(jì)算;

(Ⅱ)若[x]表示不超過(guò)x的最大整數(shù),求證:

(Ⅲ)若,,求證:gn)﹣1fn)<gn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在抗擊新冠肺炎的疫情中,某醫(yī)院從3位女醫(yī)生,5位男醫(yī)生中選出4人參加援鄂醫(yī)療隊(duì),至少有一位女醫(yī)生入選,其中女醫(yī)生甲和男醫(yī)生乙不能同時(shí)參加,則不同的選法共有種______(用數(shù)字填寫(xiě)答案).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某花圃為提高某品種花苗質(zhì)量,開(kāi)展技術(shù)創(chuàng)新活動(dòng),在實(shí)驗(yàn)地分別用甲、乙方法培育該品種花苗.為觀測(cè)其生長(zhǎng)情況,分別在實(shí)驗(yàn)地隨機(jī)抽取各50株,對(duì)每株進(jìn)行綜合評(píng)分,將每株所得的綜合評(píng)分制成如圖所示的頻率分布直方圖,記綜合評(píng)分為80分及以上的花苗為優(yōu)質(zhì)花苗.

1)用樣本估計(jì)總體,以頻率作為概率,若在兩塊實(shí)驗(yàn)地隨機(jī)抽取3株花苗,求所抽取的花苗中優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學(xué)期望;

2)填寫(xiě)下面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān).

優(yōu)質(zhì)花苗

非優(yōu)質(zhì)花苗

合計(jì)

甲培育法

20

乙培育法

10

合計(jì)

附:下面的臨界值表僅供參考.

0.050

0.010

0.001

3.841

6.635

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知SAB是邊長(zhǎng)為2的等邊三角形,∠ACB45°,當(dāng)三棱錐SABC體積最大時(shí),其外接球的表面積為( 。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面給出有關(guān)的四個(gè)論斷:①;②;③;④.以其中的三個(gè)論斷作為條件,余下的一個(gè)論斷作為結(jié)論,寫(xiě)出一個(gè)正確的命題:若______,則_______(用序號(hào)表示)并給出證明過(guò)程:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表為年至年某百貨零售企業(yè)的線下銷(xiāo)售額(單位:萬(wàn)元),其中年份代碼年份

年份代碼

線下銷(xiāo)售額

(1)已知具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測(cè)年該百貨零售企業(yè)的線下銷(xiāo)售額;

(2)隨著網(wǎng)絡(luò)購(gòu)物的飛速發(fā)展,有不少顧客對(duì)該百貨零售企業(yè)的線下銷(xiāo)售額持續(xù)增長(zhǎng)表示懷疑,某調(diào)查平臺(tái)為了解顧客對(duì)該百貨零售企業(yè)的線下銷(xiāo)售額持續(xù)增長(zhǎng)的看法,隨機(jī)調(diào)查了位男顧客、位女顧客(每位顧客從“持樂(lè)觀態(tài)度”和“持不樂(lè)觀態(tài)度”中任選一種),其中對(duì)該百貨零售企業(yè)的線下銷(xiāo)售額持續(xù)增長(zhǎng)持樂(lè)觀態(tài)度的男顧客有人、女顧客有人,能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為對(duì)該百貨零售企業(yè)的線下銷(xiāo)售額持續(xù)增長(zhǎng)所持的態(tài)度與性別有關(guān)?

參考公式及數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊(cè)答案