對于函數(shù)f(x)=-x4+x3+ax2-2x-2,其中a為實常數(shù),已知函數(shù)
y=f(x)的圖象在點(diǎn)(-1,f(-1))處的切線與y軸垂直.
(Ⅰ)求實數(shù)a的值;
(Ⅱ)若關(guān)于x的方程f(3x)=m有三個不等實根,求實數(shù)m的取值范圍;
解:(Ⅰ).
據(jù)題意,當(dāng)時取極值,所以.
因為.
由1-2a=0,得. 6分
(Ⅱ)因為,則.
所以.
由,得,即x<-1或1<x<2.
所以f(x)在區(qū)間,(1,2)上單調(diào)遞增,
在區(qū)間(-1,1),(2,+∞)上單調(diào)遞減. 8分
所以的極大值為,
極小值為. 11分
由此可得函數(shù)y=f(x)的大致圖象如下:
令,若關(guān)于的方程有三個不等實根,
則關(guān)于的方程在上有三個不等實根,
即函數(shù)的圖象與直線在上有三個不同的交點(diǎn).
又,由圖象可知,,
故的取值范圍是. 15分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
“我們稱使f(x)=0的x為函數(shù)y=f(x)的零點(diǎn).若函數(shù)y=f(x)在區(qū)間[a,b]上是連續(xù)的、單調(diào)的函數(shù),且滿足f(a)·f(b)<0,則函數(shù)y=f(x)在區(qū)間[a,b]上有唯一的零點(diǎn)”.對于函數(shù)f(x)=6ln(x+1)-x2+2x-1.
(1)討論函數(shù)f(x)在其定義域內(nèi)的單調(diào)性,并求出函數(shù)極值;
(2)證明連續(xù)函數(shù)f(x)在[2,+∞)內(nèi)只有一個零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省高三第四次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
本小題滿分12分) 對于函數(shù)f(x)=(asin x+cos x)cos x-,已知f()=1.
(1)求a的值;
(2)作出函數(shù)f(x)在x∈[0,π]上的圖像(不要求書寫作圖過程).
(3)根據(jù)畫出的圖象寫出函數(shù)在上的單調(diào)區(qū)間和最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年人教A版高中數(shù)學(xué)必修一3.1函數(shù)與方程練習(xí)卷(一)(解析版) 題型:填空題
下列說法正確的有________:
①對于函數(shù)f(x)=x2+mx+n,若f(a)>0,f(b)>0,則函數(shù)f(x)在區(qū)間(a,b)內(nèi)一定沒有零點(diǎn).
②函數(shù)f(x)=2x-x2有兩個零點(diǎn).
③若奇函數(shù)、偶函數(shù)有零點(diǎn),其和為0.
④當(dāng)a=1時,函數(shù)f(x)=|x2-2x|-a有三個零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省高三第四次質(zhì)量檢測文科數(shù)學(xué)試卷 題型:填空題
對于函數(shù)f(x)=2cos2x+2sinxcosx-1(x∈R)給出下列命題:①f(x)的最小正周期為2π;②f(x)在區(qū)間[,]上是減函數(shù);③直線x=是f(x)的圖像的一條對稱軸;④f(x)的圖像可以由函數(shù)y=sin2x的圖像向左平移而得到.其中正確命題的序號是________(把你認(rèn)為正確的都填上)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com