【題目】在如圖所示的幾何體中,四邊形是正方形, 平面, , 、、分別為、、的中點(diǎn),且.
(1)求證:平面平面;
(2)求證: 平面.
【答案】(1)見解析(2)見解析
【解析】試題分析:(1)推導(dǎo)出,由此證明面 面
(2)推導(dǎo)出, ,又則可證得平面.
試題解析:
(1)證明:E,G,F分別為MB,PB,PC的中點(diǎn),
,又四邊形ABCD是正方形,
在面PMA外,PM,AD在面PMA內(nèi), EG面PMA,GF面PMA,
又 都在平面EFG內(nèi)且相交, 面 面
(2)證明 由已知MA⊥平面ABCD,PD∥MA,
∴PD⊥平面ABCD.
又BC平面ABCD,∴PD⊥BC.
∵四邊形ABCD為正方形,∴BC⊥DC.
又PD∩DC=D,∴BC⊥平面PDC.
面
又,在正方形中,
,
為中點(diǎn), ,
又,平面.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,已知(sin A+sin B+sin C)·(sin B+sin C-sin A)=3sin Bsin C.
(Ⅰ)求角A的值;
(Ⅱ)求sin B-cos C的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}和{bn}的每一項(xiàng)都是正數(shù),且a1=8,b1=16,且an , bn , an+1成等差數(shù)列,bn , an+1 , bn+1成等比數(shù)列.
(1)求a2 , b2的值;
(2)求數(shù)列{an},{bn}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有以下命題:
①對任意的α∈R都有sin3α=3sinα﹣4sin3α成立;
②對任意的△ABC都有等式a=bcosA+ccosB成立;
③滿足“三邊是連續(xù)的三個正整數(shù)且最大角是最小的2倍”的三角形存在且唯一;
④若A,B是鈍角△ABC的二銳角,則sinA+sinB<cosA+cosB.
其中正確的命題的個數(shù)是( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=tx2-(22t+60)x+144t(x>0).
(1)要使f(x)≥0恒成立,求t的最小值;
(2)令f(x)=0,求使t>20成立的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心為原點(diǎn),離心率,其中一個焦點(diǎn)的坐標(biāo)為
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)點(diǎn)在橢圓上運(yùn)動時,設(shè)動點(diǎn)的運(yùn)動軌跡為若點(diǎn)滿足: 其中是上的點(diǎn).直線的斜率之積為,試說明:是否存在兩個定點(diǎn),使得為定值?若存在,求的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有兩個不透明的箱子,每個箱子都裝有4個完全相同的小球,球上分別標(biāo)有數(shù)字1,2,3,4.
(1)甲從其中一個箱子中摸出一個球,乙從另一個箱子摸出一個球,誰摸出的球上標(biāo)的數(shù)字大誰就獲勝(若數(shù)字相同則為平局),求甲獲勝的概率;
(2)摸球方法與(1)同,若規(guī)定:兩人摸到的球上所標(biāo)數(shù)字相同甲獲勝,所標(biāo)數(shù)字不相同則乙獲勝,這樣規(guī)定公平嗎?請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間與極值;
(2)若,關(guān)于的不等式恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=sin2x的圖象向右平移φ(0<φ< )個單位后得到函數(shù)g(x)的圖象,若對滿足|f(x1)﹣g(x2)|=2的x1、x2有|x1﹣x2|min= ,則φ= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com