【題目】在平面直角坐標系xOy中,中心在原點的橢圓C的上焦點為,離心率等于.
求橢圓C的方程;
設(shè)過且不垂直于坐標軸的動直線l交橢圓C于A、B兩點,問:線段OF上是否存在一點D,使得以DA、DB為鄰邊的平行四邊形為菱形?作出判斷并證明.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線與圓C:相交,截得的弦長為.
(1)求圓C的方程;
(2)過原點O作圓C的兩條切線,與函數(shù)的圖象相交于M、N兩點(異于原點),證明:直線與圓C相切;
(3)若函數(shù)圖象上任意三個不同的點P、Q、R,且滿足直線和都與圓C相切,判斷線與圓C的位置關(guān)系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機構(gòu)用簡單隨機抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如下表.
非一線城市 | 一線城市 | 總計 | |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
總計 | 58 | 42 | 100 |
附表:
由算得,,
參照附表,得到的正確結(jié)論是
A. 在犯錯誤的概率不超過0.1%的前提下,認為“生育意愿與城市級別有關(guān)”
B. 在犯錯誤的概率不超過0.1%的前提下,認為“生育意愿與城市級別無關(guān)”
C. 有99%以上的把握認為“生育意愿與城市級別有關(guān)”
D. 有99%以上的把握認為“生育意愿與城市級別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某少數(shù)民族的刺繡有著悠久的歷史,下圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第個圖形包含個小正方形.
(1)求出,,,并猜測的表達式;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知橢圓 (a>b>0)的離心率為,長軸長為4.過橢圓的左頂點A作直線l,分別交橢圓和圓x2+y2=a2于相異兩點P,Q.
(1)若直線l的斜率為,求的值;
(2)若,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一對夫婦為了給他們的獨生孩子支付將來上大學的費用,從孩子一周歲生日開始,每年到銀行儲蓄元一年定期,若年利率為保持不變,且每年到期時存款(含利息)自動轉(zhuǎn)為新的一年定期,當孩子18歲生日時不再存入,將所有存款(含利息)全部取回,則取回的錢的總數(shù)為
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某海濱浴場海浪的高度(米是時刻,單位:時)的函數(shù),記作:,下表是某日各時刻的浪高數(shù)據(jù):
時 | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
米 | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 |
經(jīng)長期觀測,的曲線可近似地看成是函數(shù),,的圖象.
(
(2)依據(jù)規(guī)定,當海浪高度高于1米時才對沖浪愛好者開放,請依據(jù)(1)的結(jié)論,判斷一天內(nèi)的至之間,那個時間段不對沖浪愛好者開放?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù),試研究函數(shù)的極值情況;
(2)記函數(shù)在區(qū)間內(nèi)的零點為,記,若在區(qū)間內(nèi)有兩個不等實根,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知PA⊥平面ABCD,且四邊形ABCD為矩形,M、N分別是AB、PC的中點.
(1)求證:MN⊥CD;
(2)若∠PDA=45°,求證:MN⊥平面PCD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com