【題目】如圖,在正方體中,若是線段上的動點,則下列結(jié)論不正確的是( )
A. 三棱錐的正視圖面積是定值
B. 異面直線,所成的角可為
C. 異面直線,所成的角為
D. 直線與平面所成的角可為
【答案】D
【解析】
判斷主視圖的底與高是否發(fā)生變化來判斷,利用幾何法以及建立空間坐標(biāo)系將線線角以及線面角的關(guān)系轉(zhuǎn)化為向量的關(guān)系來判斷,和.
對于,三棱錐的主視圖為三角形,底邊為的長,高為正方體的高,故棱錐的主視圖面積不變,故正確;
對于,分別以,,為坐標(biāo)軸,以為原點建立空間直角坐標(biāo)系,設(shè)正方體邊長為1,,,,,
∴,,∴,當(dāng)時,方程有解, ∴異面直線,所成的角可為,故B正確.
對于,連結(jié),,,則,∵,∴,
又∵,于是平面,∵平面,∴,故C正確;
對于,結(jié)合B中的坐標(biāo)系,可得面的法向量為,,
所以,令,方程無解,即直線與平面所成的角可為是錯誤的,故選D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若將函數(shù)y=2sin(3x+φ)的圖象向右平移 個單位后得到的圖象關(guān)于點( ,0)對稱,則|φ|的最小值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:實數(shù)滿足,:實數(shù)滿足
(1)若為真命題,求實數(shù)的取值范圍.
(2)若是的充分不必要條件,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
如圖,在四棱錐P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分別是PB,PC的中點.
(Ⅰ)證明:EF∥平面PAD;
(Ⅱ)求三棱錐E—ABC的體積V.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖甲,在直角梯形PBCD中,PB∥CD,CD⊥BC,BC=PB=2CD,A是PB的中點.
現(xiàn)沿AD把平面PAD折起,使得PA⊥AB(如圖乙所示),E、F分別為BC、AB邊的中點.
(1)求證:平面PAE⊥平面PDE;
(2)在PE上找一點Q,使得平面BDQ⊥平面ABCD.
(3)在PA上找一點G,使得FG∥平面PDE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex(x2﹣2x+2﹣a2)(a>0),g(x)=x2+6x+c(c∈R).
(1)若曲線y=f(x)在點(0,f(0))處的切線方程為y=﹣4x﹣2,求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)當(dāng)a=1時,對x1∈[﹣2,2],x2∈[﹣2,2],使f(x1)<g(x2)成立,求實數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)P是不等式組 表示的平面區(qū)域內(nèi)的任意一點,向量 =(1,1), =(2,1),若 =λ +μ (λ,μ為實數(shù)),則λ﹣μ的最大值為( )
A.4
B.3
C.﹣1
D.﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)p:實數(shù)x滿足x2-2(a+1)x+2a+a2<0,q:實數(shù)x滿足
(1)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量, ,設(shè)函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)在中,邊分別是角的對邊,角為銳角,若, , 的面積為,求邊的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com