在曲線y=x2上切線斜率為1的點是( 。
A.(0,0)B.(
1
2
1
4
)
C.(
1
4
,
1
16
)
D.(2,4)
由y=x2,得y′=2x,
設(shè)曲線y=x2上切線斜率為1的點是(x0,y0),
則2x0=1,x0=
1
2

y0=x02=(
1
2
)2=
1
4

∴在曲線y=x2上切線斜率為1的點是(
1
2
,
1
4
)

故選:B.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=x3-3x2-9x-1.求:
(Ⅰ)函數(shù)在(1,f(1))處的切線方程;
(Ⅱ)函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=2x3+ax與g(x)=bx2+c的圖象都過點p(2,0),且在點p處有相同的切線.
(1)求實數(shù)a,b,c
(2)設(shè)函數(shù)F(x)=f(x)+g(x),求F(x)在[2,m]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求曲線y=
1
x
和y=x2在它們交點處的兩條切線與x軸所圍成的三角形面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)f(x)的導函數(shù)y=f'(x)的圖象如圖所示,其中-3,2,4是f'(x)=0的根,現(xiàn)給出下列命題:
(1)f(4)是f(x)的極小值;
(2)f(2)是f(x)極大值;
(3)f(-2)是f(x)極大值;
(4)f(3)是f(x)極小值;
(5)f(-3)是f(x)極大值.
其中正確的命題是( 。
A.(1)(2)(3)(4)(5)B.(1)(2)(5)C.(1)(2)D.(3)(4)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

根據(jù)導數(shù)的定義f′(x1)等于(  )
A.
lim
x1→0
f(x1)-f(x0)
x1x0
B.
lim
△x→0
f(x1)-f(x0)
△x
C.
lim
△x→0
f(x1+△x)-f(x1)
△x
D.
lim
x1→0
f(x1+△x)-f(x1)
△x

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

實數(shù)a∈[-1,1],b∈[0,2].設(shè)函數(shù)f(x)=-
1
3
x3+
1
2
ax2+bx
的兩個極值點為x1,x2,現(xiàn)向點(a,b)所在平面區(qū)域投擲一個飛鏢,則飛鏢恰好落入使x1≤-1且x2≥1的區(qū)域的概率為( 。
A.
1
2
B.
1
3
C.
1
4
D.
1
5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax3+bx2+(c-3a-2b)x+d的圖象如圖所示.
(1)求c,d的值;
(2)若函數(shù)f(x)在x=2處的切線方程為3x+y-11=0,求函數(shù)f(x)的
解析式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若不等式x+2
2xy
≤a(x+y)對一切正數(shù)x、y恒成立,則正數(shù)a的最小值為( 。
A.1B.2C.
2
+
1
2
D.2
2
+1

查看答案和解析>>

同步練習冊答案