(14分)
已知橢圓的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)是(0,),(0,),又點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)已知直線的斜率為,若直線與橢圓交于、兩點(diǎn),求面積的最大值.

(1)
(2)

解: (Ⅰ)由已知拋物線的焦點(diǎn)為,故設(shè)橢圓方程為.
將點(diǎn)代入方程得,整理得,
解得(舍).故所求橢圓方程為.
(Ⅱ)設(shè)直線的方程為,設(shè)
代入橢圓方程并化簡(jiǎn)得,            
,可得 ①.     
,
.                          
又點(diǎn)的距離為,                          
,
當(dāng)且僅當(dāng),即時(shí)取等號(hào)(滿足①式)(基本不等式)
所以面積的最大值為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分10分)
已知橢圓C的焦點(diǎn)F1(-,0)和F2,0),長(zhǎng)軸長(zhǎng)6,設(shè)直線交橢圓C于A  B兩點(diǎn),且線段AB的中點(diǎn)坐標(biāo)是P(-,),求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是橢圓上的點(diǎn).若是橢圓的兩個(gè)焦點(diǎn),則等于(    )
A.4B.5C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

己知橢圓C:的左、右焦點(diǎn)為、,離心率為。直線軸、軸分別交于點(diǎn)A、B,M是直線橢圓C的一個(gè)公共點(diǎn),P是點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),設(shè)。
(1)證明:                                 
(2)確定的值,使得是等腰三角形。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓方程為),拋物線方程為.過(guò)拋物線的焦點(diǎn)作軸的垂線,與拋物線在第一象限的交點(diǎn)為,拋物線在點(diǎn)的切線經(jīng)過(guò)橢圓的右焦點(diǎn). 
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設(shè)為橢圓上的動(dòng)點(diǎn),由軸作垂線,垂足為,且直線上一點(diǎn)滿足,求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓的兩個(gè)焦點(diǎn)為、,點(diǎn)滿足的取值范圍為      ,直線與橢圓的公共點(diǎn)的個(gè)數(shù)為  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知水平地面上有一籃球,在斜平行光線的照射下,其陰影為一橢圓(如上圖),在平面直角坐標(biāo)系中,O為原點(diǎn),設(shè)橢圓的方程為),籃球與地面的接觸點(diǎn)為H,則|OH|=           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓G:的兩個(gè)焦點(diǎn)為是橢圓上一點(diǎn),且滿
(1)求離心率的取值范圍;
(2)當(dāng)離心率取得最小值時(shí),點(diǎn)到橢圓上點(diǎn)的最遠(yuǎn)距離為
①求此時(shí)橢圓G的方程;
②設(shè)斜率為的直線與橢圓G相交于不同兩點(diǎn),的中點(diǎn),問(wèn):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓的左,右焦點(diǎn)為,,(1,)為橢圓上一點(diǎn),橢圓的
長(zhǎng)半軸長(zhǎng)等于焦距,曲線C是以坐標(biāo)原點(diǎn)為頂點(diǎn),以為焦點(diǎn)的拋物線,自引直線交曲線C于P,Q兩個(gè)不同的交點(diǎn),點(diǎn)P關(guān)于軸的對(duì)稱點(diǎn)記為M,設(shè)
(1)求橢圓方程和拋物線方程;
(2)證明:;
(3)若求|PQ|的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案