已知雙曲線的兩條漸近線與拋物線的準(zhǔn)線分別交于兩點(diǎn),為坐標(biāo)原點(diǎn).若雙曲線的離心率為2,的面積為,則_________.
 

試題分析:由漸進(jìn)線聯(lián)立可得交點(diǎn)A.B.所以.…①又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031151224465.png" style="vertical-align:middle;" />所以.…②.所以由①②可得.本小題的關(guān)鍵是解出A,B兩點(diǎn)的坐標(biāo)即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓兩焦點(diǎn)坐標(biāo)分別為,,一個(gè)頂點(diǎn)為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在斜率為的直線,使直線與橢圓交于不同的兩點(diǎn),滿足. 若存在,求出的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線與直線相交于A、B 兩點(diǎn).
(1)求證:;
(2)當(dāng)的面積等于時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知橢圓的方程為,雙曲線的兩條漸近線為、.過(guò)橢圓的右焦點(diǎn)作直線,使,又交于點(diǎn),設(shè)與橢圓的兩個(gè)交點(diǎn)由上至下依次為.

(1)若的夾角為,且雙曲線的焦距為,求橢圓的方程;
(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓 的左、右焦點(diǎn)分別是、,是橢圓右準(zhǔn)線上的一點(diǎn),線段的垂直平分線過(guò)點(diǎn).又直線按向量平移后的直線是,直線按向量平移后的直線是 (其中)。
(1) 求橢圓的離心率的取值范圍。
(2)當(dāng)離心率最小且時(shí),求橢圓的方程。
(3)若直線相交于(2)中所求得的橢圓內(nèi)的一點(diǎn),且與這個(gè)橢圓交于、兩點(diǎn),與這個(gè)橢圓交于、兩點(diǎn)。求四邊形ABCD面積的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,直線與以原點(diǎn)為圓心,以橢圓的短半軸長(zhǎng)為半徑的圓相切.
(1)求橢圓的方程;
(2)拋物線與橢圓有公共焦點(diǎn),設(shè)軸交于點(diǎn),不同的兩點(diǎn)、 上(不重合),且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上的拋物線被直線截得的弦長(zhǎng)為,求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

平面上動(dòng)點(diǎn)滿足,,則一定有(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)拋物線的焦點(diǎn)的直線交拋物線于兩點(diǎn),點(diǎn)是坐標(biāo)原點(diǎn),若,則△的面積為(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案