定義在R上的函數(shù)滿足f(x)=f(x+2),當x∈[1,3]時,f(x)=2-|x-2|,則( 。
A、f(sin
π
6
)<f(cos
π
6
)
B、f (sin1)>f (cos1)
C、f(cos
3
)<f(sin
3
)
D、f (cos2)>f (sin2)
考點:函數(shù)的周期性
專題:函數(shù)的性質及應用
分析:本題先通過條件當x∈[1,3]時的解析式,求出函數(shù)在[-1,1]上的解析式,得到相應區(qū)間上的單調性,再利用函數(shù)單調性比較各選項中的函數(shù)值大小,得到本題結論.
解答: 解:∵當x∈[1,3]時,f(x)=2-|x-2|,f(x)=f(x+2),
∴當x∈[-1,1]時,x+2∈[1,3],
f(x)=f(x+2)=2-|(x+2)-2|=2-|x|,
f(-x)=f(x).
∴f(x)在[-1,1]上的偶函數(shù).
∴當x>0時,f(x)=2-x,f(x)在[0,1]上單調遞減.
π
2
<x<
3
4
π
,
∴-
2
2
<cos2<0,
2
2
<sin2<1
,
∴0<-cos2<
2
2
<sin2,
∴f(cos2)=f(-cos2)<f(sin2).
故選D.
點評:本題考查了函數(shù)的奇偶性和單調性及應用,本題難度不大,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,對一切正整數(shù)n,點Pn(n,Sn)都在函數(shù)f(x)=x2+2x的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)設cn=tan(t>0),數(shù)列{cn}的前n項和Tn,求
lim
n→∞
Tn+1
Tn
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,已知a10=30,a20=50,
(1)求通項an
(2)若Sn=80,求n
(3)設數(shù)列{bn}滿足log2bn=an-12,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列推理過程,錯誤的是
 

①l∥α,A∈l⇒A∉α;
②A∈l,A∈α,B∈l⇒B∈α;
③A∈α,A∈β,B∈α,B∈β⇒α∩β=AB;
④A,B,C∈α,A,B,C∈β,并且A,B,C不共線⇒α=β.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某產品的廣告費用x與銷售額y的統(tǒng)計數(shù)據如表:
廣告費用x(萬元)4235
銷售額y(萬元)49263954
根據上表可得回歸方程
y
=
b
x+
a
中的
b
為9.4,據此模型預報廣告費用為6萬元時銷售額為( 。
A、63.6萬元
B、67.7萬元
C、65.5萬元
D、72.0萬元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=e|lnx|-|x-
1
x
|,則函數(shù)y=f(x)的大致圖象為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設拋物線的頂點在原點,準線方程為x=-1,則拋物線的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)g(x)=x(2-x)的遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(3,2),
b
=(-1,2),
c
=(4,1),當k為何值時,(
a
+k
c
)∥(2
b
-
a
)平行時它們是同向還是反向?

查看答案和解析>>

同步練習冊答案