【題目】(導(dǎo)學(xué)號(hào):05856308)(12分)

如圖,∠ABCOAB上一點(diǎn),3OB=3OC=2AB,PO⊥平面ABC,2DA=2AOPO,OA=1,且DAPO.

(Ⅰ)求證:平面PBD⊥平面COD;

(Ⅱ)求點(diǎn)O到平面BDC的距離.

【答案】(1) 見(jiàn)解析(2)

【解析】試題分析:(1)利用勾股定理得出PDOD,由OC⊥平面ABPD得出OCPD,于是PD⊥平面COD,從而有平面PBD⊥平面COD;

(2)由計(jì)算可求BD,BC,CD的值,利用余弦定理可求cosBCD,利用同角三角函數(shù)基本關(guān)系式可求sinBCD的值,利用三角形面積公式可求SBCD,SBOC的值,利用體積相等VO﹣BCD=VD﹣BOC,即可得解點(diǎn)O到平面BDC的距離.

試題解析:

(Ⅰ)因?yàn)?/span>OA=1,所以POOB=2,DA=1.

DAPO,PO⊥平面ABC,知DA⊥平面ABC,∴DAAO,

從而DOPD.在△PDO中,∵PO=2,∴△PDO為直角三角形,故PDDO.

又∵OCOB=2,∠ABC,∴COAB,又PO⊥平面ABC

POOC,又POABO,∴CO⊥平面PAB,故COPD.∵CODOO,

PD⊥平面COD.又PD平面PBD,∴平面PBD⊥平面COD.

(Ⅱ)由計(jì)算得BDBC=2,CD,所以cos∠BCD,所以sin∠BCD

所以SBCD×2××,

SBOC×2×2=2.

VOBCDVDBOC,所以××d×1×2,解得d,即點(diǎn)O到平面BDC的距離為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(導(dǎo)學(xué)號(hào):05856263)

已知拋物線y2=2px(p>0)的準(zhǔn)線與x軸交于點(diǎn)N,過(guò)點(diǎn)N作圓M:(x-2)2y2=1的兩條切線,切點(diǎn)為P、Q,且|PQ|=.

(Ⅰ)求拋物線的方程;

(Ⅱ)過(guò)拋物線的焦點(diǎn)F作斜率為k1的直線與拋物線交于A、B兩點(diǎn),A、B兩點(diǎn)的橫坐標(biāo)均不為2,連接AMBM并延長(zhǎng)分別交拋物線于C、D兩點(diǎn),設(shè)直線CD的斜率為k2,問(wèn)是否為定值?若是,求出該定值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-5:不等式選講]

已知函數(shù)f(x)=|2x+1||2x﹣3|,g(x)=|x+1|+|x﹣a|

(l)求fx≥1的解集;

(2)若對(duì)任意的tR,sR,都有g(s)f(t).求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)選修4-2:矩陣與變換

求矩陣的特征值和特征向量.

(2)選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,圓的方程為,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,圓的參數(shù)方程是參數(shù)),若圓與圓相切,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(導(dǎo)學(xué)號(hào):05856295)德國(guó)大數(shù)學(xué)家高斯年少成名,被譽(yù)為數(shù)學(xué)王子.19歲的高斯得到了一個(gè)數(shù)學(xué)史上非常重要的結(jié)論,就是《正十七邊形尺規(guī)作圖之理論與方法》, 在其年幼時(shí),對(duì)1+2+3+…+100的求和運(yùn)算中,提出了倒序相加法的原理,該原理基于所給數(shù)據(jù)前后對(duì)應(yīng)項(xiàng)的和呈現(xiàn)一定的規(guī)律生成,因此,此方法也被稱為高斯算法.現(xiàn)有函數(shù)f(x)=,則f(1)+f(2)+…+f(m+2017)等于(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5 kg,乙材料1 kg,用5個(gè)工時(shí);生產(chǎn)一件產(chǎn)品B需要甲材料0.5 kg,乙材料0.3 kg,用3個(gè)工時(shí),生產(chǎn)一件產(chǎn)品A的利潤(rùn)為2100元,生產(chǎn)一件產(chǎn)品B的利潤(rùn)為900.該企業(yè)現(xiàn)有甲材料150 kg,乙材料90 kg,則在不超過(guò)600個(gè)工時(shí)的條件下,生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤(rùn)之和的最大值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(導(dǎo)學(xué)號(hào):05856331)

甲、乙兩家快餐店對(duì)某日7個(gè)時(shí)段的光顧的客人人數(shù)進(jìn)行統(tǒng)計(jì)并繪制莖葉圖如下圖所示(下面簡(jiǎn)稱甲數(shù)據(jù)、乙數(shù)據(jù)),且乙數(shù)據(jù)的眾數(shù)為17,甲數(shù)據(jù)的平均數(shù)比乙數(shù)據(jù)平均數(shù)少2.

(Ⅰ)求a,b的值,并計(jì)算乙數(shù)據(jù)的方差;

(Ⅱ)現(xiàn)從乙數(shù)據(jù)中不大于16的數(shù)據(jù)中隨機(jī)抽取兩個(gè),求至少有一個(gè)數(shù)據(jù)小于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)?/span>A的函數(shù)f(x),若對(duì)任意的x1,x2A,都有f(x1x2)f(x1)≤f(x2),則稱函數(shù)f(x)定義域上的M函數(shù),給出以下五個(gè)函數(shù):

f(x)2x3,xR;f(x)x2x;f(x)x21,x;f(x)sin x,xf(x)log2x,x[2,+∞)

其中是定義域上的M函數(shù)的有(  )

A. 2個(gè) B. 3個(gè)

C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1時(shí),求上的單調(diào)區(qū)間;

2, 均恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案