【題目】在四棱錐中, 平面,底面為矩形, ,該四棱錐的外接球的體積為,則到平面的距離為( )
A. B. C. D.
【答案】C
【解析】 得出,外接球的球心O在底面中心E的正上方,且
OE=PD,在直角三角形OEA中,AE=4,R=5,所以OE=3,則PD=6,因?yàn)?/span>AD平行于面PBC,所以點(diǎn)到平面的距離與點(diǎn)D到平面的距離相等,取點(diǎn)M做DM⊥PC,∵PD⊥面ABCD,∴PD⊥BC,又BC⊥CD,PD∩CD=D,∴BC⊥面PDC,又BC面PBC,∴面PBC⊥面PDC,PC為交線,又在直角△PDC中,有DM⊥PC,∴DM⊥面PBC,∴DM即為所求距離,在Rt△PDC中,PD=6,DC=,故DM=,
即點(diǎn)D到平面PBC的距離等于,則到平面的距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), = .
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)有兩個(gè)零點(diǎn).
(1)求滿足條件的最小正整數(shù)的值;
(2)求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)證明: ,直線都不是曲線的切線;
(Ⅱ)若,使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列四個(gè)命題
①“若,則互為相反數(shù)”的逆命題;
②“全等三角形的面積相等”的否命題;
③“若,則有實(shí)根”的逆否命題;
④“不等邊三角形的三個(gè)內(nèi)角相等”的逆命題.
其中真命題為_______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱柱中,底面,底面是梯形,,,.
(1)求證:平面平面;
(2)在線段上是否存在一點(diǎn),使平面,若存在,請(qǐng)確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,則下列敘述正確的是( )
A.若α∥β,m∥α,n∥β,則m∥n
B.若α⊥β,m⊥α,n∥β,則m⊥n
C.若m∥α,n∥α,m∥β,n∥β,m⊥n,則α∥β
D.若m⊥α,nβ,m⊥n,則α⊥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中, 是正三角形,四邊形是矩形,且.
(1)求證:平面平面;
(2)若點(diǎn)在線段上,且,當(dāng)三棱錐的體積為時(shí),求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
一個(gè)盒子里裝有三張卡片,分別標(biāo)記有數(shù)字1,2,3,這三張卡片除標(biāo)記的數(shù)字外完全相同.隨機(jī)有放回地抽取3次,每次抽取1張,將抽取的卡片上的數(shù)字依次記為.
(1)求“抽取的卡片上的數(shù)字滿足”的概率;
(2)求“抽取的卡片上的數(shù)字不完全相同”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某折疊餐桌的使用步驟如圖所示,有如圖檢查項(xiàng)目:
項(xiàng)目①:折疊狀態(tài)下(如圖1),檢查四條桌腿長(zhǎng)相等;
項(xiàng)目②:打開過(guò)程中(如圖2),檢查;
項(xiàng)目③:打開過(guò)程中(如圖2),檢查;
項(xiàng)目④:打開后(如圖3),檢查;
項(xiàng)目⑤:打開后(如圖3),檢查.
在檢查項(xiàng)目的組合中,可以正確判斷“桌子打開之后桌面與地面平行的是”( )
A. ①②③ B. ②③④ C. ②④⑤ D. ③④⑤
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com