13.設(shè)x,y滿(mǎn)足不等式$\left\{\begin{array}{l}y≤2\\ x+y≥1\\ x-y≤1\end{array}\right.$,若M=4x+y,N=($\frac{1}{2}$)x,則M-N的最小值為-4.

分析 由約束條件作出可行域,M-N的最小值,就是M的最小值減去N的最大值,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件不等式$\left\{\begin{array}{l}y≤2\\ x+y≥1\\ x-y≤1\end{array}\right.$作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{y=2}\\{x+y=1}\end{array}\right.$,解得A(-1,2),
由z=4x+y,得y=-4x+z,
由圖可知,當(dāng)直線y=-4x+z過(guò)A時(shí),直線在y軸上的截距最小,z有最小值為-4+2=-2.即M的最小值為:-2.
N=($\frac{1}{2}$)x,由圖象可知N=($\frac{1}{2}$)x,經(jīng)過(guò)A時(shí),N取得最大值:2.
M-N的最小值為:-2-2=-4.
故答案為:-4.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.離心率為$\frac{3}{4}$的橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),P∈C,且P到橢圓的兩個(gè)焦點(diǎn)距離之和為8則橢圓C的方程為$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{7}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)△ABC的內(nèi)角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,則下列命題正確的個(gè)數(shù)是.(  )
①若ab>c2,則$C<\frac{π}{3}$
②若a+b>2c,則$C<\frac{π}{3}$
③若a3+b3=c3,則$C<\frac{π}{2}$
④若(a+b)c<2ab,則$C>\frac{π}{2}$
⑤若(a2+b2)c2<2a2b2,則$C>\frac{π}{3}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖是棱長(zhǎng)為1的正方體的平面展開(kāi)圖,則在這個(gè)正方體中,以下結(jié)論錯(cuò)誤的是( 。
A.點(diǎn)M到AB的距離為$\frac{{\sqrt{2}}}{2}$B.AB與EF所成角是90°
C.三棱錐C-DNE的體積是$\frac{1}{6}$D.EF與MC是異面直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知各頂點(diǎn)都在同一個(gè)球面上的正三棱柱的高為4,體積為12$\sqrt{3}$,則這個(gè)球的表面積為32π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.為了解某市居民日常用水量的標(biāo)準(zhǔn),某機(jī)構(gòu)通過(guò)抽樣獲得了100位居民某年的月均用水量(單位:噸),如表是這100位居民月均用水量的頻率分布表,根據(jù)如表解答下列問(wèn)題:
(1)求如表中a和b的值;
(2)請(qǐng)將下面的頻率分布直方圖補(bǔ)充完整,并根據(jù)直方圖估計(jì)該市每位居民月均用水量的中位數(shù)(精確到0.01).
分組頻數(shù)頻率
[0,1)10b
[1,2)200.20
[2,3)a0.30
[3,4)200.20
[4,5)100.10
[5,6]100.10
合計(jì)1001.00

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.一臺(tái)機(jī)器由于使用時(shí)間較長(zhǎng),但還可以使用,它按不同的轉(zhuǎn)速生產(chǎn)出來(lái)的某機(jī)器零件有一些會(huì)有缺點(diǎn),每小時(shí)生產(chǎn)有缺點(diǎn)零件的多少隨機(jī)器運(yùn)轉(zhuǎn)的速度而變化,如表是抽樣試驗(yàn)結(jié)果:
轉(zhuǎn)速x/(rad/s)1614128
每小時(shí)生產(chǎn)有缺點(diǎn)的零件數(shù)y/件11985
若實(shí)際生產(chǎn)中,允許每小時(shí)的產(chǎn)品中有缺點(diǎn)的零件數(shù)最多為10個(gè),那么機(jī)器的轉(zhuǎn)速應(yīng)該控制所在的范圍是( 。
A.10轉(zhuǎn)/s以下B.15轉(zhuǎn)/s以下C.20轉(zhuǎn)/s以下D.25轉(zhuǎn)/s以下

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知命題p:“x∈R時(shí),都有x2-x+$\frac{1}{4}$<0”;命題q:“存在x∈R,使sinx+cosx=$\sqrt{2}$成立”.則下列判斷正確的是( 。
A.p∨q為假命題B.p∧q為真命題C.¬p∧q為真命題D.¬p∨¬q是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=ax-3+bsinx+x2+8(ab≠0),且f(-2)=3,則f(2)=21.

查看答案和解析>>

同步練習(xí)冊(cè)答案