設(shè)0<a<1,且logax+3logxa-logxy=3,
(1)設(shè)x=at(t≠0),以a,t表示y;
(2)若y的最大值為,求a,x.
【答案】分析:(1)若設(shè)x=at,試用a、t表示y.首先對等式logax+3logxa-logxy=3利用換底公式化簡為(logax2-3logax+3=logay,然后把x=at代入化簡即可.
(2)先根據(jù)(1)所解得的函數(shù)y=,然后利用二次函數(shù)的性質(zhì)求如果y有最大值時a和x的值
解答:解:(1)已知 logax+3logxa-logxy=3
即logax+3logxa-3=logxy
利用換底公式有:logax+3logxa-3=
則(logax2-3logax+3=logay
設(shè)x=at,則:t=logax
即:t2-3t+3=logay,
∴y=
(2)∵y=f(x)有最大值,且0<a<1,
∴l(xiāng)ogay有最小值loga
當logax=時,loga=
∴a=
此時=
∴x=,
即a=,x=為所求
點評:本小題主要考查函數(shù)單調(diào)性的應(yīng)用、對數(shù)函數(shù)的值域與最值、對數(shù)方程式的解法等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

4、設(shè)0<a<1,m=loga(a2+1),n=loga(a+1),p=loga(2a),則m,n,p的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)0<a<1,且logax+3logxa-logxy=3,
(1)設(shè)x=at(t≠0),以a,t表示y;
(2)若y的最大值為
2
4
,求a,x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)0<a<1,且logax+3logxa-logxy=3,
(1)設(shè)x=at(t≠0),以a,t表示y;
(2)若y的最大值為數(shù)學公式,求a,x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年重點中學聯(lián)考一文) 設(shè)0<a<1,且m=loga(a2+1),n=loaa+1),P=loga(2a),則m、n、P的大小為           

(用“>”號連接)

查看答案和解析>>

同步練習冊答案