(2013•遼寧一模)如圖已知四邊形ABCD內(nèi)接于⊙O,DA與CB的延長線交于點E,且EF∥CD,AB的延長線與EF相交于點F,F(xiàn)G切⊙O于點G.
求證:EF=FG.
分析:由切割線定理可得FG2=FB•FA.再利用平行線的性質(zhì)和A,B,C,D四點共圓的性質(zhì)可得∠EAF=∠BEF,進而得到△EFA∽△BFE,可得
EF
FB
=
FA
EF
,從而證明結(jié)論.
解答:解:∵FG與⊙O相切于點G,∴FG2=FB•FA.
∵EF∥CD,∴∠BEF=∠ECD.
又A,B,C,D四點共圓,∴∠ECD=∠EAF,∴∠BEF=∠EAF.
∵∠EFA公用,∴△EFA∽△BFE,∴
EF
FB
=
FA
EF
,∴EF2=FB•FA.
∴EF2=FG2,即EF=FG.
點評:熟練掌握切割線定理、平行線的性質(zhì)、四點共圓的性質(zhì)、相似三角形的判定與性質(zhì)是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•遼寧一模)已知:函數(shù)f(x)=-x3+mx在(0,1)上是增函數(shù).
(1)求實數(shù)m的取值的集合A;
(2)當m取集合A中的最小值時,定義數(shù)列{an}:滿足a1=3,且an>0,an+1=
-3f(an)+9
-2
,求數(shù)列{an}的通項公式
(3)若bn=nan數(shù)列{bn}的前n項和為Sn,求證:Sn
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•遼寧一模)已知直線l是過點P(-1,2),方向向量為
n
=(-1,
3
)
的直線,圓方程ρ=2cos(θ+
π
3
)

(1)求直線l的參數(shù)方程
(2)設(shè)直線l與圓相交于M,N兩點,求|PM|•|PN|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•遼寧一模)命題“?x∈R,使x2+ax-4a<0為假命題”是“-16≤a≤0”的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•遼寧一模)已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦點F,直線x=
a2
c
與其漸近線交于A,B兩點,且△ABF為鈍角三角形,則雙曲線離心率的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•遼寧一模)已知O是銳角△ABC的外接圓圓心,∠A=θ,若
cosB
sinC
AB
+
cosC
sinB
AC
=2m
AO
,則m=
sinθ
sinθ
.(用θ表示)

查看答案和解析>>

同步練習冊答案