【題目】根據(jù)《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在2080 mg/100ml(不含80)之間,屬于酒后駕車,血液酒精濃度在80mg/100ml(含80)以上時(shí),屬醉酒駕車.某市交警在該市一交通崗前設(shè)點(diǎn)對過往的車輛進(jìn)行抽查,經(jīng)過一晚的抽查,共查出酒后駕車者60名,圖甲是用酒精測試儀對這60 名酒后駕車者血液中酒精濃度進(jìn)行檢測后依所得結(jié)果畫出的頻率分布直方圖.

(1)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,圖乙的程序框圖是對這60名酒后駕車者血液的酒精濃度做進(jìn)一步的統(tǒng)計(jì),求出圖乙輸出的S的值,并說明S的統(tǒng)計(jì)意義;(圖乙中數(shù)據(jù)分別表示圖甲中各組的組中值及頻率)

2)本次行動(dòng)中,吳、李兩位先生都被酒精測試儀測得酒精濃度屬于7090的范圍,但他倆堅(jiān)稱沒喝那么多,是測試儀不準(zhǔn),交警大隊(duì)隊(duì)長決定在被酒精測試儀測得酒精濃度屬于7090范圍的酒后駕車者中隨機(jī)抽出2人抽血檢驗(yàn),設(shè)為吳、李兩位先生被抽中的人數(shù),求的分布列,并求吳、李兩位先生至少有1人被抽中的概率.

【答案】(1),名酒后駕車者血液的酒精濃度的平均值;(2)分布列見解析,.

【解析】

試題分析:(1)由圖乙知輸出的,代入已知數(shù)據(jù)可求,的統(tǒng)計(jì)意義為名酒后駕車者血液的酒精濃度的平均值;2)根據(jù)直方圖可求酒精濃度屬于-/的范圍的人數(shù),然后求出取值,,根據(jù)超幾何分布進(jìn)而求出相應(yīng)的概率,即可求解分布列,吳、李兩位先生至少有人被抽中的概率.

試題解析:(1)由圖乙知輸出的

47mg/100ml

S的統(tǒng)計(jì)意義為60名酒后駕車者血液的酒精濃度的平均值.

2)酒精濃度屬于7090的范圍的人數(shù)為

的可能取值為0,12

,,

分布列如下:

0

1

2

P

吳、李兩位先生至少有1人被抽中的概率.

()

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x||x|>3},B={x|x2–5x–6≤0},求:

(1)AB

(2)(RA)∪B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位同學(xué)學(xué)生參加數(shù)學(xué)競賽培訓(xùn),在培訓(xùn)期間他們參加5項(xiàng)預(yù)賽,成績?nèi)缦拢?/span>

甲:78 76 74 90 82

乙:90 70 75 85 80

)用莖葉圖表示這兩組數(shù)據(jù);

)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從平均數(shù)、方差的角度考慮,你認(rèn)為選派哪位學(xué)生參加合適?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】統(tǒng)計(jì)表明,某種型號(hào)的汽車在勻速行駛中每小時(shí)的耗油量(升)關(guān)于行駛速度(千米/小時(shí))的函數(shù)解析式可以表示為:已知甲、乙兩地相距100千米

當(dāng)汽車以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?

II)當(dāng)汽車以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位決定投資3200元建一倉庫(長方體狀),高度恒定,它的后墻利用舊墻不花錢,正面用鐵柵,每米長造價(jià)40元,兩側(cè)墻砌磚,每米長造價(jià)45元,頂部每平方米造價(jià)20元。

(1)設(shè)鐵柵長為米,一堵磚墻長為米,求函數(shù)的解析式;

(2)為使倉庫總面積達(dá)到最大,正面鐵柵應(yīng)設(shè)計(jì)為多長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,平面與平面垂直,是正方形,在直角梯形中,,,且為線段的中點(diǎn).

(1)求證:平面;

(2)求證:平面

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若存在兩個(gè)極值點(diǎn),求證:無論實(shí)數(shù)取什么值都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究性學(xué)習(xí)小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:

(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均小于25”的概率;

(2)請根據(jù)3月2日至3月4日的數(shù)據(jù),求出關(guān)于的線性回歸方程.

(參考公式:回歸直線方程為,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列說法:①球的半徑是球面上任意一點(diǎn)與球心的連線;②球的直徑是球面上任意兩點(diǎn)的連線;③用一個(gè)平面截一個(gè)球面,得到的是一個(gè)圓;④球常用表示球心的字母表示.

其中說法正確的是______

查看答案和解析>>

同步練習(xí)冊答案