2.命題p:“?x≥0,e${\;}^{{x}_{0}}$<x0+1”,則¬p是( 。
A.?x≥0,ex<x+1B.?x≥0,ex>x+1C.?x≥0,ex≥x+1D.?x≥0,ex≥x+1

分析 利用特稱命題的否定是全稱命題,寫(xiě)出結(jié)果即可.

解答 解:由全稱命題的否定為特稱命題可知:命題p:“?x≥0,e${\;}^{{x}_{0}}$<x0+1”,則¬p是:?x≥0,ex≥x+1.
故選:D

點(diǎn)評(píng) 本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.用C(A)表示非空集合A中的元素個(gè)數(shù).已知A={1,2},B={x|(x2+ax)•(x2+ax+2)=0,若|C(A)-C(B)|=1,設(shè)實(shí)數(shù)a的所有可能取值集合是S,則C(S)=( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.求證:函數(shù)f(x)=$\frac{x+a}{x+1}$(a>1)在區(qū)間(-1,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.定義域?yàn)镽的四個(gè)函數(shù)y=x3,y=x2+1,y=$\frac{1}{x}$,y=|x|+3中,奇函數(shù)的個(gè)數(shù)是( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,圓錐頂點(diǎn)為P,底面圓心為O,其母線與底面所成的角為45°,AB和CD是底面圓O上的兩條平行的弦,∠COD=60°.
(1)證明:平面PAB與平面PCD的交線平行于底面;
(2)求軸OP與平面PCD所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知p:x≥m,q:|x-1|<1,若¬q是¬p的必要不充分條件,則實(shí)數(shù)m的取值范圍是m≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知兩圓的方程是x2+y2=1和x2+y2-6x-8y+9=0,那么這兩個(gè)圓的公切線的條數(shù)是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知集合{a|0≤a<4,a∈N},用列舉法可以表示為{0,1,2,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.點(diǎn)P是雙曲線$\frac{x^2}{9}$-$\frac{y^2}{16}$=1的右支上一點(diǎn),M是圓(x+5)2+y2=4上一點(diǎn),點(diǎn)N的坐標(biāo)為(5,0),則|PM|-|PN|的最大值為(  )
A.5B.6C.7D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案