【題目】已知z是復(fù)數(shù),z+2i, 均為實數(shù)(i為虛數(shù)單位),且復(fù)數(shù)(z+ai)2在復(fù)平面上對應(yīng)的點在第一象限,求實數(shù)a的取值范圍.
【答案】解:設(shè)復(fù)數(shù)z=m+ni(m,n∈R), 由題意得z+2i=m+ni+2i=m+(n+2)i∈R,
∴n+2=0,即n=﹣2.
又∵ ,
∴2n+m=0,即m=﹣2n=4.∴z=4﹣2i.
∵(z+ai)2=(4﹣2i+ai)2=[4+(a﹣2)i]2=16﹣(a﹣2)2+8(a﹣2)i
對應(yīng)的點在復(fù)平面的第一象限,橫標和縱標都大于0,
∴
解得a的取值范圍為2<a<6
【解析】設(shè)出復(fù)數(shù)的代數(shù)形式,整理出代數(shù)形式的結(jié)果,根據(jù)兩個都是實數(shù)虛部都等于0,得到復(fù)數(shù)的代數(shù)形式.代入復(fù)數(shù)(z+ai)2 , 利用復(fù)數(shù)的加減和乘方運算,寫出代數(shù)的標準形式,根據(jù)復(fù)數(shù)對應(yīng)的點在第一象限,寫出關(guān)于實部大于0和虛部大于0,解不等式組,得到結(jié)果.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=(x2﹣2ax)ebx , x為自變量.
(1)函數(shù)f(x)分別在x=﹣1和x=1處取得極小值和極大值,求a,b.
(2)若a≥0且b=1,f(x)在[﹣1,1]上是單調(diào)函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,其中a>0.
(Ⅰ)若a=1,求曲線y=f(x)在點(2,f(2))處的切線方程;
(Ⅱ)若在區(qū)間上,f(x)>0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)z=(a2﹣7a+6)+(a2﹣5a﹣6)i(a∈R)
(1)若復(fù)數(shù)z為純虛數(shù),求實數(shù)a的值;
(2)若復(fù)數(shù)z在復(fù)平面內(nèi)的對應(yīng)點在第四象限,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩千多年前,古希臘畢達哥拉斯學(xué)派的數(shù)學(xué)家曾經(jīng)在沙灘上研究數(shù)學(xué)問題.他們在沙灘上畫點或用小石子表示數(shù),按照點或小石子能排列的形狀對數(shù)進行分類.如下圖中實心點的個數(shù)5,9,14,20,…為梯形數(shù).根據(jù)圖形的構(gòu)成,記此數(shù)列的第2013項為a2013 , 則a2013﹣5=( )
A.2019×2013
B.2019×2012
C.1006×2013
D.2019×1006
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3=9,a1=b1 , a14=b4 . (Ⅰ)求{an}的通項公式;
(Ⅱ)設(shè)cn=an+bn , 求數(shù)列{cn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ,函數(shù)的圖象在點處的切線平行于軸.
(1)確定與的關(guān)系;
(2)若,試討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班主任對全班50名學(xué)生學(xué)習(xí)積極性和對待班級工作的態(tài)度進行了調(diào)查,統(tǒng)計數(shù)據(jù)如下表所示:
積極參加班級工作 | 不太主動參加班級工作 | 合計 | |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性一般 | 6 | 19 | 25 |
合計 | 24 | 26 | 50 |
(1)如果隨機抽查這個班的一名學(xué)生,那么抽到積極參加班級工作的學(xué)生的概率是多少?抽到不太主動參加班級工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)試運用獨立性檢驗的思想方法點撥:學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度是否有關(guān)系?并說明理由.(參考下表)
P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=sin(2x﹣ )的圖象先向左平移 個單位,再將圖象上各點的橫坐標變?yōu)樵瓉淼? 倍(縱坐標不變),那么所得圖象的解析式為y= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com