α∈(0,
π2
),且cos2α=sin2α,則tanα
=
 
分析:由α的范圍得到cosα≠0,已知等式右邊利用二倍角的正弦函數(shù)公式化簡(jiǎn),再兩邊除以cosα,利用同角三角函數(shù)間的基本關(guān)系化簡(jiǎn)即可求出tanα的值.
解答:解:∵cos2α=sin2α=2sinαcosα,且α∈(0,
π
2
),即cosα≠0,
∴cosα=2sinα,
則tanα=
sinα
cosα
=
sinα
2sinα
=
1
2

故答案為:
1
2
點(diǎn)評(píng):此題考查了二倍角的正弦函數(shù)公式,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-3x-x3,x∈R,若θ∈[0,
π2
]
時(shí),不等式f(cos2θ-2t)+f(4sinθ-3)≥0恒成立,則實(shí)數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xoy中,角α的始邊與x軸的非負(fù)半軸重合且與單位圓相交于A點(diǎn),它的終邊與單位圓相交于x軸上方一點(diǎn)B,始邊不動(dòng),終邊在運(yùn)動(dòng).
(1)若點(diǎn)B的橫坐標(biāo)為-
4
5
,求tanα的值;
(2)若△AOB為等邊三角形,寫出與角α終邊相同的角β的集合;
(3)若α∈[0,
3
]
,請(qǐng)寫出弓形AB的面積S與α的函數(shù)關(guān)系式,并指出函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x2+1)e2x,若0°<2α<90°,90°<β<180°a=(sinα)cosβ,b=(cosα)sinβ,c=(cosα)cosβ,則f(a),f(b),f(c)的大小關(guān)系是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x3(x∈R),若0≤θ<
π
2
時(shí),f(m•sinθ)+f(2-m)>0恒成立,則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx-2cos2x+1

(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若α∈(0,
π
2
)
,且f(α)=1,求α的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案