【題目】已知函數(shù)f(x)=(x﹣1)|x﹣a|﹣x﹣2a(x∈R).
(1)若a=﹣1,求方程f(x)=1的解集;
(2)若 ,試判斷函數(shù)y=f(x)在R上的零點(diǎn)個(gè)數(shù),并求此時(shí)y=f(x)所有零點(diǎn)之和的取值范圍.
【答案】
(1)解:方法一:
當(dāng)a=﹣1時(shí),
由f(x)=1得 或
解得 x=0,1,﹣2,即解集為{0,1,﹣2}.
方法二:當(dāng)a=﹣1時(shí),由f(x)=1得:(x﹣1)|x+1|﹣(x﹣1)=0(x﹣1)(|x+1|﹣1)=0
∴得x=1或|x+1|=1∴x=1或x=0或x=﹣2
即解集為{0,1,﹣2}.
(2)解:
當(dāng)x≥a時(shí),令x2﹣(a+2)x﹣a=0,∵ ,
∴△=a2+8a+4=(a+4)2﹣12>0
得 ,
且
先判斷2﹣a,與 大小:
∵ ,即a<x1<x2,故當(dāng)x≥a時(shí),f(x)存在兩個(gè)零點(diǎn).
當(dāng)x<a時(shí),令﹣x2+ax﹣3a=0,即x2﹣ax+3a=0得∵ ,
∴△=a2﹣12a=(a﹣6)2﹣36>0
得 ,
同上可判斷x3<a<x4,故x<a時(shí),f(x)存在一個(gè)零點(diǎn).
綜上可知當(dāng) 時(shí),f(x)存在三個(gè)不同零點(diǎn).
且
設(shè) ,易知g(a)在 上單調(diào)遞增,
故g(a)∈(0,2)∴x1+x2+x3∈(0,2)
【解析】(1)方法一:化簡(jiǎn)分段函數(shù),分段求解方程的根即可,方法二:當(dāng)a=﹣1時(shí),利用f(x)=1化簡(jiǎn)求解即可.(2)化簡(jiǎn)分段函數(shù),通過(guò)當(dāng)x≥a時(shí),當(dāng)x<a時(shí),求出函數(shù)的零點(diǎn),推出 ,構(gòu)造函數(shù),利用函數(shù)的單調(diào)性,求解即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P(x,y)在圓x2+y2﹣6x﹣6y+14=0上
(1)求 的最大值和最小值;
(2)求x2+y2+2x+3的最大值與最小值;
(3)求x+y的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)= 的定義域?yàn)榧螦,函數(shù)g(x)=x﹣a(0<x<4)的值域?yàn)榧螧. (Ⅰ)求集合A,B;
(Ⅱ)若集合A,B滿足A∩B=B,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的左焦點(diǎn)F及點(diǎn)A(0,b),原點(diǎn)O到直線FA的距離為 .
(1)求橢圓C的離心率e;
(2)若點(diǎn)F關(guān)于直線l:2x+y=0的對(duì)稱(chēng)點(diǎn)P在圓O:x2+y2=4上,求橢圓C的方程及點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面四邊形ABCD中,AD=1,CD=2,AC= .
(1)求cos∠CAD的值;
(2)若cos∠BAD=﹣ ,sin∠CBA= ,求BC的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:x∈R,x2+2x﹣m=0;命題q:x∈R,mx2+mx+1>0.
(1)若命題p為真命題,求實(shí)數(shù)m的取值范圍;
(2)若命題q為假命題,求實(shí)數(shù)m的取值范圍;
(3)若命題p∨q為真命題,且p∧q為假命題,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在我國(guó)古代著名的數(shù)學(xué)專(zhuān)著《九章算術(shù)》里有一段敘述:今有良馬與駑馬發(fā)長(zhǎng)安至齊,齊去長(zhǎng)安一千一百二十五里,良馬初日行一百零三里,日增十三里;駑馬初日行九十七里,日減半里;良馬先至齊,復(fù)還迎駑馬,二馬相逢.問(wèn):幾日相逢?( )
A.9日
B.8日
C.16日
D.12日
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線 (a>0,b>0)的兩條漸近線與拋物線D:y2=2px(p>0)的準(zhǔn)線分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),雙曲線的離心率為 ,△ABO的面積為2 .
(1)求雙曲線C的漸近線方程;
(2)求p的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com