9、已知函數(shù)f(x)對一切實數(shù)x都有f(2-x)=f(2+x),若函數(shù)f(x)恰有4個零點,則這些零點之間的和為
8
分析:根據(jù)函數(shù)f(x)對一切實數(shù)x都有f(2-x)=f(2+x),可知函數(shù)f(x)的圖象關于直線x=2對稱,因此函數(shù)f(x)恰有4個零點,兩兩關于直線x=2對稱,從而求得這些零點之間的和.
解答:解:∵函數(shù)f(x)對一切實數(shù)x都有f(2-x)=f(2+x),
∴函數(shù)f(x)的圖象關于直線x=2對稱,
設函數(shù)f(x)恰有4個零點分別為x1,x2,x3,x4,
則x1+x2+x3+x4=8,
故答案為8.
點評:此題是個基礎題.考查函數(shù)的零點和函數(shù)的對稱性以及函數(shù)的對稱性的應用.考查學生分析解決問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•青島一模)已知函數(shù)f(x)對定義域R內的任意x都有f(x)=f(4-x),且當x≠2時其導函數(shù)f′(x)滿足xf′(x)>2f′(x),若2<a<4則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•綿陽一模)已知函數(shù)f(x)定義在區(qū)間(-1,1)上,f(
1
2
)=-1,且當x,y∈(-1,1)時,恒有f(x)-f(y)=f(
x-y
1-xy
).又數(shù)列{an}滿足,a1=
1
2
,an+1=
2an
1+an2

(I )證明:f(x)在(-1,1)上是奇函數(shù)
( II )求f(an)的表達式;
(III)設bn=
1
2log2|f(an+1)
,Tn為數(shù)列{bn}的前n項和,若T2n+1-Tn
m
15
(其中m∈N*)對N∈N*恒成立,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•濱州一模)已知函數(shù)f(x)=
3
2
sin2x-cos2x-
1
2
,x∈R.
(Ⅰ)求函數(shù)f(x)的單調遞減區(qū)間;
(Ⅱ)設△ABC的三個內角A,B,C的對邊分別為a,b,c,其中c=2
3
,f(C)=0,若向量
m
=(sinB,2)與向量
n
=(1,-sinA)垂直,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•武清區(qū)一模)已知函數(shù)f(x)對任意的x,y∈R,均有f(x+y)=f(x)f(y),且當x>0時,0<f(x)<1,設M={y|f(y)f(1-2a)>f(1)},N={y|f(ax2+2x-y+3)=1,x∈R},若M∩N=∅,則實數(shù)a的取值范圍是
1
2
≤a≤1
1
2
≤a≤1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•內江一模)已知函數(shù)f(x)對任意的x∈R有f(x)+f(-x)=0,且當x>0時,f(x)=ln(x+1),則函數(shù)f(x)的大致圖象為( 。

查看答案和解析>>

同步練習冊答案