設(shè)拋物線C1:y2=4mx(m>0)的準(zhǔn)線與x軸交于點(diǎn)F1,焦點(diǎn)為F2;橢圓C2以F1、F2為焦點(diǎn),離心率e=
1
2

(I)(文科做)當(dāng)m=1時(shí),
①求橢圓C2的標(biāo)準(zhǔn)方程;
②若直線l與拋物線交于A、B兩點(diǎn),且線段AB恰好被點(diǎn)P(3,2)平分,設(shè)直線l與橢圓C2交于M、N兩點(diǎn),求線段MN的長(zhǎng);
(II)(僅理科做)設(shè)拋物線C1與橢圓C2的一個(gè)交點(diǎn)為Q,是否存在實(shí)數(shù)m,,使得△QF1F2的邊長(zhǎng)是連續(xù)的自然數(shù)?若存在,求出這樣的實(shí)數(shù)m的值;若不存在,請(qǐng)說(shuō)明理由.
(I)①∵c1:y2=4mx的右焦點(diǎn)F2(m,0)∴橢圓的半焦距c=m,
e=
1
2
,∴橢圓的長(zhǎng)半軸的長(zhǎng)a=2m,短半軸的長(zhǎng)b=
3
m

橢圓方程為
x2
4m2
+
y2
3m2
=1
,
∴當(dāng)m=1時(shí),故橢圓方程為
x2
4
+
y2
3
=1

②由題意得,若x=3,則y=±2
3
,線段AB不可能被點(diǎn)P(3,2)平分,
∴直線l的斜率k一定存在,不妨設(shè)直線l的方程為:y-2=k(x-3),A(x1,y1),B(x2,y2
y2=4x
y-2=k(x-3)
得ky2-4y-12k+8=0,
∴y1+y2=
4
k
=4,∴k=1,
∴直線l的方程為:y-2=x-3,即y=x-1.
(II)假設(shè)存在滿足條件的實(shí)數(shù)m,
y2=4mx
x2
4m2
+
y2
3m2
=1
,解得:Q(
2
3
m,
8
3
m)
,
|QF2|=
2
3
m+m=
5
3
m
,|QF1|=4m-|QF2|=
7
3
m
,又|F1F2|=2m=
6
3
m

即△QF1F2的邊長(zhǎng)分別是
5
3
m
、
6
3
m
7
3
m

6m
3
-
5m
3
=
7m
3
-
6m
3
=1
∴m=3,
故存在實(shí)數(shù)m使△PF1F2的邊長(zhǎng)是連續(xù)的自然數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,設(shè)拋物線C1:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,焦點(diǎn)為F2;以F1,F(xiàn)2為焦點(diǎn),離心率e=
12
的橢圓C2與拋物線C1在x軸上方的交點(diǎn)為P.
(1)當(dāng)m=1時(shí),求橢圓C2的方程;
(2)當(dāng)△PF1F2的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù)時(shí),求拋物線方程;此時(shí)設(shè)⊙C1、⊙C2…⊙Cn是圓心在y2=4mx(m>0)上的一系列圓,它們的圓心縱坐標(biāo)分別為a1,a2…an,已知a1=6,a1>a2>…>an>0,又⊙Ck(k=1,2,…,n)都與y軸相切,且順次逐個(gè)相鄰?fù)馇校髷?shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,設(shè)拋物線C1:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,焦點(diǎn)為F2;以F1,F(xiàn)2為焦點(diǎn),離心率e=
12
的橢圓C2與拋物線C1在x軸上方的交點(diǎn)為P,延長(zhǎng)PF2交拋物線于點(diǎn)Q,M是拋物線C1上一動(dòng)點(diǎn),且M在P與Q之間運(yùn)動(dòng).
(1)當(dāng)m=1時(shí),求橢圓C2的方程;
(2)當(dāng)△PF1F2的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù)時(shí),求△MPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)拋物線C1:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,焦點(diǎn)為F2,以F1,F(xiàn)2為焦點(diǎn),離心率為
12
的橢圓C2與拋物線C1的一個(gè)交點(diǎn)為P.
(1)若橢圓的長(zhǎng)半軸長(zhǎng)為2,求拋物線方程;
(2)在(1)的條件下,直線l經(jīng)過(guò)橢圓C2的右焦點(diǎn)F2,與拋物線C1交于A1,A2兩點(diǎn),如果|A1A2|等于△PF1F2的周長(zhǎng),求l的斜率;
(3)是否存在實(shí)數(shù)m,使得△PF1F2的邊長(zhǎng)是連續(xù)的自然數(shù)?若存在,求出m的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,設(shè)拋物線C1:y2=4mx(m>0)的準(zhǔn)線與x軸交于點(diǎn)F1,焦點(diǎn)為F2;以F1,F(xiàn)2為焦點(diǎn),離心率為
1
2
的橢圓C2與拋物線C1在x軸上方的交點(diǎn)為P,延長(zhǎng)PF2交拋物線于點(diǎn)Q,M是拋物線C1上一動(dòng)點(diǎn),且M在P與Q之間運(yùn)動(dòng).
(1)當(dāng)m=3時(shí),求橢圓C2的標(biāo)準(zhǔn)方程;
(2)若|PF2|=5且P點(diǎn)橫坐標(biāo)為
2
3
m
,求面積△MPQ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,設(shè)拋物線C1:y2=4mx(m>0)的焦點(diǎn)為F2,且其準(zhǔn)線與x軸交于F1,以F1,F(xiàn)2為焦點(diǎn),離心率e=
12
的橢圓C2與拋物線C1在x軸上方的一個(gè)交點(diǎn)為P.
(1)當(dāng)m=1時(shí),求橢圓C2的方程;
(2)是否存在實(shí)數(shù)m,使得△PF1F2的三條邊的邊長(zhǎng)是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù)m;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案