如圖所示,已知以點(diǎn) 為圓心的圓與直線 相切,過點(diǎn)的動(dòng)直線 與圓 相交于兩點(diǎn),的中點(diǎn),直線相交于點(diǎn) .

(1)求圓的方程;
(2)當(dāng)時(shí),求直線的方程;
(3)是否為定值?如果是,求出其定值;如果不是,請(qǐng)說明理由.

(1); (2);(3)是定值,且

解析試題分析:(1)已知圓的圓心,再根據(jù)直線與圓相切可利用圓心到直線的距離等于半徑來求出圓心,這樣即可求出圓的標(biāo)準(zhǔn)方程; (2)已知直線被圓截得的弦長(zhǎng)可聯(lián)想到圓的特征三角形的三邊的關(guān)系: ,又直線過一點(diǎn)可聯(lián)想到設(shè)出直線的點(diǎn)斜式方程,但此處一定要注意斜率是否存在從而分兩種情況討論:當(dāng)斜率不存在時(shí),由圖可直接分析得出;當(dāng)斜率存在時(shí),先計(jì)算出圓心到直線的距離,再結(jié)合已知由上述特征三角形的關(guān)系可求出直線的斜率,進(jìn)而得出直線方程; (3)要判斷是否為定值,發(fā)現(xiàn)點(diǎn)是弦的中點(diǎn),根據(jù)圓的幾何性質(zhì)有:,即可得,再由向量運(yùn)算的知識(shí)可知,這樣可轉(zhuǎn)化為去求,最后結(jié)合(2)中所設(shè)直線的兩種形式去求出點(diǎn)的坐標(biāo),由向量數(shù)量積的運(yùn)算公式可得是一個(gè)常數(shù).
試題解析:(1)設(shè)圓的半徑為,因?yàn)閳A與直線相切,所以,故圓的方程為; (2)當(dāng)直線與軸垂直時(shí),易知符合題意;當(dāng)直線與軸不垂直時(shí),設(shè)直線的方程為,即.連接,則,,由,得,得直線的方程為,所求直線的方程為:;(3) ,當(dāng)直線與軸垂直時(shí),得,則,又,當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,由 ,解得, ,綜上所述,是定值,且
考點(diǎn):1.圓的方程;2.直線與圓的位置關(guān)系;3.向量的數(shù)量積

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C上的動(dòng)點(diǎn)P()滿足到定點(diǎn)A(-1,0)的距離與到定點(diǎn)B(1,0)距離之比為
(1)求曲線C的方程。
(2)過點(diǎn)M(1,2)的直線與曲線C交于兩點(diǎn)M、N,若|MN|=4,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知半徑為2,圓心在直線上的圓C.
(Ⅰ)當(dāng)圓C經(jīng)過點(diǎn)A(2,2)且與軸相切時(shí),求圓C的方程;
(Ⅱ)已知E(1,1),F(1,-3),若圓C上存在點(diǎn)Q,使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓的圓心與點(diǎn)關(guān)于直線對(duì)稱,直線與圓相交于、兩點(diǎn),且,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知?jiǎng)狱c(diǎn)到定點(diǎn)與到定點(diǎn)的距離之比為.
(1)求動(dòng)點(diǎn)的軌跡C的方程,并指明曲線C的軌跡;
(2)設(shè)直線,若曲線C上恰有三個(gè)點(diǎn)到直線的距離為1,求實(shí)數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓,直線 ,與圓交與兩點(diǎn),點(diǎn).
(1)當(dāng)時(shí),求的值;
(2)當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓,直線
(1)判斷直線與圓C的位置關(guān)系;
(2)設(shè)與圓C交與不同兩點(diǎn)A、B,求弦AB的中點(diǎn)M的軌跡方程;
(3)若定點(diǎn)P(1,1)分弦AB為,求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知圓 的圓心為,過點(diǎn)且斜率為的直線與圓相交于不同的兩點(diǎn)
(Ⅰ)求的取值范圍;
(Ⅱ)以O(shè)A,OB為鄰邊作平行四邊形OADB,是否存在常數(shù),使得直線OD與PQ平行?如果存在,求值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求經(jīng)過三點(diǎn)A,B(),  C(0,6)的圓的方程,并指出這個(gè)圓的半徑和圓心坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案