對(duì)任意的實(shí)數(shù)k,直線y=kx+1與橢圓恒有兩個(gè)交點(diǎn),則的取值范圍____
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的左右焦點(diǎn)分別為,是橢圓上的一點(diǎn),且,坐標(biāo)原點(diǎn)直線的距離為
(1)求橢圓的方程;
(2) 設(shè)是橢圓上的一點(diǎn),過點(diǎn)的直線軸于點(diǎn),交軸于點(diǎn),若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓方程為,拋物線方程為.過拋物線的焦點(diǎn)作軸的垂線,與拋物線在第一象限的交點(diǎn)為,拋物線在點(diǎn)處的切線經(jīng)過橢圓的右焦點(diǎn). 
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設(shè)為橢圓上的動(dòng)點(diǎn),由軸作垂線,垂足為,且直線上一點(diǎn)滿足,求點(diǎn)的軌跡方程,并說明軌跡是什么曲線?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線與橢圓恒有公共點(diǎn),則實(shí)數(shù)的取值范圍為(   )
A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


橢圓G的兩個(gè)焦點(diǎn)、M是橢圓上一點(diǎn),且滿足.                                    
(1)求離心率的取值范圍;
(2)當(dāng)離心率取得最小值時(shí),點(diǎn)到橢圓上的點(diǎn)的最遠(yuǎn)距離為;
①求此時(shí)橢圓G的方程;
②設(shè)斜率為)的直線與橢圓G相交于不同的兩點(diǎn)A、BQAB的中點(diǎn),問:A、B兩點(diǎn)能否關(guān)于過點(diǎn)、Q的直線對(duì)稱?若能,求出的取值范圍;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(、(本小題滿分12分)
已知橢圓的中心在原點(diǎn),焦點(diǎn),且經(jīng)過點(diǎn)
(1)求橢圓的方程;
(2)設(shè)、是直線上的兩個(gè)動(dòng)點(diǎn),點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱,若,求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過橢圓的右焦點(diǎn)F作直線交橢圓于M,N兩點(diǎn),設(shè)
(1)求直線的斜率;
(2)設(shè)M,N在直線上的射影分別為M1,N1,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
已知橢圓的標(biāo)準(zhǔn)方程為,過點(diǎn)的雙曲線的實(shí)軸的兩端點(diǎn)恰好是橢圓的兩焦點(diǎn),求雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)A、B分別為橢圓的左、右頂點(diǎn),橢圓的長(zhǎng)軸長(zhǎng)為4,且點(diǎn)在該橢圓上。
(I)求橢圓的方程;
(II)設(shè)P為直線x=4上不同于點(diǎn)(4,0)的任意一點(diǎn),若直線AP與橢圓相交于A的點(diǎn)
M,證明:為銳角三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案