【題目】已知函數(shù) 的定義域?yàn)镽.
(1)求實(shí)數(shù)m的范圍;
(2)若m的最大值為n,當(dāng)正數(shù)a,b滿足 時(shí),求4a+7b的最小值.
【答案】
(1)解:∵函數(shù)的定義域?yàn)镽,|x+2|+|x﹣4|≥|(x+2)﹣(x﹣4)|=6,∴m≤6.
(2)解:由(Ⅰ)知n=6,由柯西不等式知,4a+7b= = ,當(dāng)且僅當(dāng) 時(shí)取等號,∴4a+7b的最小值為 .
【解析】(I)利用絕對值不等式的性質(zhì)即可得出.(II)利用柯西不等式的性質(zhì)即可得出.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的定義域及其求法和絕對值不等式的解法,需要了解求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當(dāng)對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零;含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點(diǎn), 是橢圓上的點(diǎn),設(shè)動(dòng)點(diǎn)滿足.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)若直線與曲線相交于, 兩個(gè)不同點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:關(guān)于x的不等式|x﹣2|+|x+2|>m的解集是R; q:關(guān)于x的不等式x2+mx+4>0的解集是R.則p成立是q成立的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.即不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖:
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生期中考試數(shù)學(xué)成績的平均分;
(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機(jī)抽取6名學(xué)生,將該樣本看成一個(gè)總體,從中隨機(jī)抽取2名,求其中恰有1人的分?jǐn)?shù)不低于90分的概率?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以原點(diǎn)為圓心,半徑為的圓 與直線相切.
(1)直線過點(diǎn)且截圓所得弦長為求直線 的方程;
(2)設(shè)圓與軸的正半軸的交點(diǎn)為,過點(diǎn)作兩條斜率分別為 的直線交圓于兩點(diǎn),且 ,證明:直線恒過一個(gè)定點(diǎn),并求出該定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x+ |+|x﹣a|(a>0).
(1)證明:f(x)≥2;
(2)若f(3)<5,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,按其數(shù)學(xué)成績(均為整數(shù))分成六組, ,…, 后得到如下部分頻率分布直方圖,觀察圖中的信息,回答下列問題:
(1)補(bǔ)全頻率分布直方圖;
(2)估計(jì)本次考試的數(shù)學(xué)平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)用分層抽樣的方法在分?jǐn)?shù)段為的學(xué)生成績中抽取一個(gè)容量為6的樣本,再從這6個(gè)樣本中任取2人成績,求至多有1人成績在分?jǐn)?shù)段內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公比不為1的等比數(shù)列{an}的前3項(xiàng)積為27,且2a2為3a1和a3的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若數(shù)列{bn}滿足bn=bn﹣1log3an+1(n≥2,n∈N*),且b1=1,求數(shù)列{ }的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知常數(shù)數(shù)列的前項(xiàng)和為,且
(1)求數(shù)列的通項(xiàng)公式;
(2)若且數(shù)列是單調(diào)遞增數(shù)列,求實(shí)數(shù)的取值范圍;
(3)若數(shù)列滿足:對于任意給定的正整數(shù),是否存在使 ?若存在,求的值(只要寫出一組即可);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com