(10分)在四棱錐P—ABCD中,底面ABCDa的正方形,PA⊥平面ABCD,

PA=2AB
(1)求證:平面PAC⊥平面PBD;
(2)求二面角B—PC—D的余弦值.
解:(Ⅰ)證明:∵PA⊥平面ABCD   ∴PA⊥BD
∵ABCD為正方形   ∴AC⊥BD
∴BD⊥平面PAC又BD在平面BPD內(nèi),
∴平面PAC⊥平面BPD      6分
(Ⅱ)解法一:在平面BCP內(nèi)作BN⊥PC垂足為N,連DN,
∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;
∴∠BND為二面角B—PC—D的平面角,
在△BND中,BN=DN=,BD=
∴cos∠BND =
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖4,是半徑為的半圓,為直徑,點的中點,點和點為線段的三等分點,平面外一點滿足平面,=

(1)證明:
(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在長方體ABCD-A1B1C1D1中,E,H分別是棱A1B1,D1C1上的點(點E與B1不重合),且EH∥A1 D1. 過EH的平面與棱BB1,CC1相交,交點分別為F,G。

(I)           證明:AD∥平面EFGH;
(II)        設(shè)AB=2AA1 ="2" a .在長方體ABCD-A1B1C1D1內(nèi)隨機選取一點。記該點取自幾何體A1ABFE-D1DCGH內(nèi)的概率為p,當(dāng)點E,F(xiàn)分別在棱A1B1上運動且滿足EF=a時,求p的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC內(nèi)接于圓O,AB是圓O的直徑,,
,設(shè)AE與平面ABC所成的角為,且,
四邊形DCBE為平行四邊形,DC平面ABC.
(1)求三棱錐C-ABE的體積;
(2)證明:平面ACD平面ADE;
(3)在CD上是否存在一點M,使得MO//平面ADE?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(10分)正方體ABCD—A1B1C1D1中,G、H分別是BC、CD的中點,求證D1、B1、G、H四點在同一個平面內(nèi)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

2條直線將一個平面最多分成4部分,3條直線將一個平面最多分成7部分, 4條直線將一個平面最多分成11部分,……;,,;……
(1)條直線將一個平面最多分成多少個部分(>1)?證明你的結(jié)論;
(2)個平面最多將空間分割成多少個部分(>2)?證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共12分)直四棱柱中,底面是邊長為的正方形,側(cè)棱長為4。
(1)求證:平面平面
(2)求點到平面的距離d;
(3)求三棱錐的體積V。
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

、表示三條不同的直線,表示平面,給出下列命題:
①若,,則;②若,,則;
③若,,則;④若,,則.
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

四面體ABCD中,共頂點A的三條棱兩兩相互垂直,且其長分別為,若四面體的四個頂點同在一個球面上,則這個球的表面積為    。

查看答案和解析>>

同步練習(xí)冊答案