(本題滿(mǎn)分14分)
設(shè)函數(shù),且
,其中
是自然對(duì)數(shù)的底數(shù).
(1)求與
的關(guān)系;
(2)若在其定義域內(nèi)為單調(diào)函數(shù),求
的取值范圍;
(3)設(shè),若在
上至少存在一點(diǎn)
,使得
>
成立,求實(shí)數(shù)
的
取值范圍.
(1) ;(2)
. (3)
.
【解析】本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。
(1)利用題目中的條件f(e)的值,得到p,q的關(guān)系式。
(2)因?yàn)楹瘮?shù)在其定義域內(nèi)為單調(diào)函數(shù),那么導(dǎo)函數(shù)應(yīng)該是恒大于等于零或者恒小于等于零,那么得到參數(shù)的范圍。
(3)構(gòu)造函數(shù),通過(guò)研究函數(shù)的最值,得到參數(shù)的范圍。
解:(1)由題意得
而,所以
、
的關(guān)系為
(2)由(1)知,
令,要使
在其定義域
內(nèi)是單調(diào)函數(shù),只需
在
內(nèi)滿(mǎn)足:
恒成立.
①當(dāng)時(shí),
,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012111915543792578758/SYS201211191555506601801391_DA.files/image018.png">>,所以
<0,
<0,
∴在
內(nèi)是單調(diào)遞減函數(shù),即
適合題意;
②當(dāng)>0時(shí),
,其圖像為開(kāi)口向上的拋物線(xiàn),對(duì)稱(chēng)軸為
,
∴,
只需,即
,
∴在
內(nèi)為單調(diào)遞增函數(shù),故
適合題意.
③當(dāng)<0時(shí),
,其圖像為開(kāi)口向下的拋物線(xiàn),對(duì)稱(chēng)軸為
,只要
,即
時(shí),
在
恒成立,故
<0適合題意.
綜上所述,的取值范圍為
.
(3)∵在
上是減函數(shù),
∴時(shí),
;
時(shí),
,即
,
當(dāng)時(shí),由(2)知
在
上遞減
<2,不合題意;
②當(dāng)0<<1時(shí),由
,
又由(2)知當(dāng)時(shí),
在
上是增函數(shù),
∴<
,不合題意;
③當(dāng)時(shí),由(2)知
在
上是增函數(shù),
<2,
又在
上是減函數(shù),故只需
>
,
,
而,
,
即 >2, 解得
>
,
綜上,的取值范圍是
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
π |
3 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,為
上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線(xiàn)段AB上,且滿(mǎn)足AM=2MB,試在線(xiàn)段CE上確定一點(diǎn)N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿(mǎn)分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求實(shí)數(shù)m的值
(Ⅱ)若ACRB,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題
(本題滿(mǎn)分14分)
已知點(diǎn)是⊙
:
上的任意一點(diǎn),過(guò)
作
垂直
軸于
,動(dòng)點(diǎn)
滿(mǎn)足
。
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)已知點(diǎn),在動(dòng)點(diǎn)
的軌跡上是否存在兩個(gè)不重合的兩點(diǎn)
、
,使
(O是坐標(biāo)原點(diǎn)),若存在,求出直線(xiàn)
的方程,若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題
(本題滿(mǎn)分14分)已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有根?如果有根
,請(qǐng)求出一個(gè)長(zhǎng)度為
的區(qū)間
,使
;如果沒(méi)有,請(qǐng)說(shuō)明理由?(注:區(qū)間的長(zhǎng)度為
).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com