已知橢圓的焦點(diǎn)坐標(biāo)為F1(-1,0),F2(1,0),過F2垂直于長軸的直線交橢圓于PQ兩點(diǎn),且|PQ|=3.
(1)求橢圓的方程;
(2)過F2的直線l與橢圓交于不同的兩點(diǎn)M,N,則△F1MN的內(nèi)切圓的面積是否存在最大值?若存在,求出這個最大值及此時的直線方程;若不存在,請說明理由.

(1)(2)l的方程為x=1.

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線的中心為原點(diǎn),左、右焦點(diǎn)分別為,離心率為,點(diǎn)是直線上任意一點(diǎn),點(diǎn)在雙曲線上,且滿足.
(1)求實(shí)數(shù)的值;
(2)證明:直線與直線的斜率之積是定值;
(3)若點(diǎn)的縱坐標(biāo)為,過點(diǎn)作動直線與雙曲線右支交于不同的兩點(diǎn)、,在線段上去異于點(diǎn)的點(diǎn),滿足,證明點(diǎn)恒在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線的焦點(diǎn)與橢圓的焦點(diǎn)重合,且該橢圓的長軸長為,是橢圓上的的動點(diǎn).
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)設(shè)動點(diǎn)滿足:,直線的斜率之積為,求證:存在定點(diǎn)
使得為定值,并求出的坐標(biāo);
(3)若在第一象限,且點(diǎn)關(guān)于原點(diǎn)對稱,點(diǎn)軸的射影為,連接 并延長交橢圓于
點(diǎn),求證:以為直徑的圓經(jīng)過點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,梯形ABCD的底邊AB在y軸上,原點(diǎn)O為AB的中點(diǎn),M為CD的中點(diǎn).

(1)求點(diǎn)M的軌跡方程;
(2)過M作AB的垂線,垂足為N,若存在正常數(shù),使,且P點(diǎn)到A、B 的距離和為定值,求點(diǎn)P的軌跡E的方程;
(3)過的直線與軌跡E交于P、Q兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,已知對于任意實(shí)數(shù)k,直線(k+1)x+(k)y-(3k)=0恒過定點(diǎn)F.設(shè)橢圓C的中心在原點(diǎn),一個焦點(diǎn)為F,且橢圓C上的點(diǎn)到F的最大距離為2+.
(1)求橢圓C的方程;
(2)設(shè)(mn)是橢圓C上的任意一點(diǎn),圓Ox2y2r2(r>0)與橢圓C有4個相異公共點(diǎn),試分別判斷圓O與直線l1mxny=1和l2mxny=4的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知命題:方程表示焦點(diǎn)在軸上的雙曲線。命題曲線軸交于不同的兩點(diǎn),若為假命題,為真命題,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C=1(ab>0)上任一點(diǎn)P到兩個焦點(diǎn)的距離的和為2,P與橢圓長軸兩頂點(diǎn)連線的斜率之積為-.設(shè)直線l過橢圓C的右焦點(diǎn)F,交橢圓C于兩點(diǎn)A(x1,y1),B(x2,y2).
(1)若 (O為坐標(biāo)原點(diǎn)),求|y1y2|的值;
(2)當(dāng)直線l與兩坐標(biāo)軸都不垂直時,在x軸上是否總存在點(diǎn)Q,使得直線QAQB的傾斜角互為補(bǔ)角?若存在,求出點(diǎn)Q坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓=1(a>b>0)的左焦點(diǎn)為F,離心率為,過點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長為.
(1)求橢圓的方程;
(2)設(shè)AB分別為橢圓的左、右頂點(diǎn),過點(diǎn)F且斜率為k的直線與橢圓交于CD兩點(diǎn).若=8,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定點(diǎn),曲線C是使為定值的點(diǎn)的軌跡,曲線過點(diǎn).
(1)求曲線的方程;
(2)直線過點(diǎn),且與曲線交于,當(dāng)的面積取得最大值時,求直線的方程;
(3)設(shè)點(diǎn)是曲線上除長軸端點(diǎn)外的任一點(diǎn),連接、,設(shè)的角平分線交曲線的長軸于點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案