、方程表示橢圓的充要條件是          
根據(jù)橢圓標(biāo)準(zhǔn)方程的特點可得,解得
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共13分)已知橢圓的右焦點為為橢圓的上頂點,為坐標(biāo)原點,且△是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線交橢圓于,兩點, 且使點為△的垂心(垂心:三角形三邊高線的交點)?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知、、是長軸長為的橢圓上的三點,點是長軸的一個頂點, 過橢圓中心,且,,
(1)求橢圓的方程;   
(2)如果橢圓上兩點、使的平分線垂直,則是否存在實數(shù)使?請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓的中心在坐標(biāo)原點,長軸端點為A,B,右焦點為F,且.
(I) 求橢圓的標(biāo)準(zhǔn)方程;
(II)過橢圓的右焦點F作直線,直線l1與橢圓分別交于點M,N,直線l2與橢圓分別交于點P,Q,且,求四邊形MPNQ的面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的離心率,長軸的左右兩個端點分別為;
(1)求橢圓C的方程;
(2)點在該橢圓上,且,求點軸的距離;
(3)過點(1,0)且斜率為1的直線與橢圓交于P,Q兩點,求△OPQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知地球運行的軌道是橢圓,太陽在這個橢圓的一個焦點上,這個橢圓的長半軸長約為km,半焦距約為km,則地球到太陽的最大距離是  km。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分13分)
P為橢圓上任意一點,為左、右焦點,如圖所示.
(1)若的中點為,求證:
(2)若∠,求|PF1|·|PF2|之值;
(3)橢圓上是否存在點P,使·=0,若存在,求出P點的坐標(biāo),若不存在,試說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是橢圓上的點,以為圓心的圓與軸相切于橢
圓的焦點,圓軸相交于兩點.若為銳角三角形,則橢圓的離心率
的取值范圍為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的焦點為、,點在橢圓上,若,則___.

查看答案和解析>>

同步練習(xí)冊答案