【題目】趙爽是我國古代數(shù)學家、天文學家,大約在公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了勾股圓方圖,亦稱趙爽弦圖(以弦為邊長得到的正方形由4個全等的直角三角形再加上中間的一個小正方形組成的),類比趙爽弦圖,可類似地構(gòu)造如圖所示的圖形,它是由3個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,設(shè),則(

A. B.

C. D.

【答案】D

【解析】

先設(shè),根據(jù)題意可知,求出的長,延長,求出的長,再由平面向量基本定理即可得出結(jié)果.

設(shè),因此,又由題意可得

所以,

因此;

延長,

,,

,所以;

又由題意易知,則,

在三角形中,由正弦定理可得,

,因此,

,

所以,

因為,所以,即,

整理得

所以.

故選D

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)不等式組表示的區(qū)域為A,不等式組表示的區(qū)域為B

1)在區(qū)域A中任取一點(x,y),求點(xy)∈B的概率;

2)若x、y分別表示甲、乙兩人各擲一次骰子所得的點數(shù),求點(x,y)在區(qū)域B中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在四棱錐中,底面是邊長為的正方形,是正三角形,分別是的中點。

1)求證:;

2)求平面與平面所成銳二面角的大;

3)線段上是否存在一個動點,使得直線與平面所成角為,若存在,求線段的長度,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知非零數(shù)列的遞推公式為,.

(1)求證數(shù)列是等比數(shù)列;

(2)若關(guān)于的不等式有解,求整數(shù)的最小值;

(3)在數(shù)列中,是否一定存在首項、第項、第,使得這三項依次成等差數(shù)列?若存在,請指出所滿足的條件;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】公安部交管局修改后的酒后違法駕駛機動車的行為分成兩個檔次:“酒后駕車”和“醉酒駕車”,其判斷標準是駕駛?cè)藛T每100毫升血液中的酒精含量X毫克,當20≤X<80時,認定為酒后駕車;當X≥80時認定為醉酒駕車,重慶市公安局交通管理部門在對G42高速路我市路段的一次隨機攔查行動中,依法檢測了200輛機動車駕駛員的每100毫升血液中的酒精含量酒精含量X(單位:毫克)的統(tǒng)計結(jié)果如下表:

X

[0,20)

[20,40)

[40,60)

[60,80)

[80,100)

[100,+∞)

人數(shù)

t

1

1

1

1

1

依據(jù)上述材料回答下列問題:

(1)求t的值;

(2)從酒后違法駕車的司機中隨機抽取2人,求這2人中含有醉酒駕車司機的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是雙曲線的左右焦點,其漸近線為,且右頂點到左焦點的距離為3.

1)求雙曲線的方程;

2)過的直線相交于兩點,直線的法向量為,且,求的值;

3)在(2)的條件下,若雙曲線在第四象限的部分存在一點滿足,求的值及的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個經(jīng)銷鮮花產(chǎn)品的微店,為保障售出的百合花品質(zhì),每天從云南鮮花基地空運固定數(shù)量的百合花,如有剩余則免費分贈給第二天購花顧客,如果不足,則從本地鮮花供應(yīng)商處進貨.今年四月前10天,微店百合花的售價為每支2元,云南空運來的百合花每支進價1.6元,本地供應(yīng)商處百合花每支進價1.8元,微店這10天的訂單中百合花的需求量(單位:支)依次為:251,255,231,243,263,241,265,255,244,252.

(Ⅰ)求今年四月前10天訂單中百合花需求量的平均數(shù)和眾數(shù),并完成頻率分布直方圖;

(Ⅱ)預計四月的后20天,訂單中百合花需求量的頻率分布與四月前10天相同,百合花進貨價格與售價均不變,請根據(jù)(Ⅰ)中頻率分布直方圖判斷(同一組中的需求量數(shù)據(jù)用該組區(qū)間的中點值作代表,位于各區(qū)間的頻率代替位于該區(qū)間的概率),微店每天從云南固定空運250支,還是255支百合花,四月后20天百合花銷售總利潤會更大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平行四邊形中,,過點作的垂線,交的延長線于點.連結(jié),交于點,如圖1,將沿折起,使得點到達點的位置,如圖2.

(1)證明:平面平面

(2)若的中點,的中點,且平面平面,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調(diào)查消費者的維權(quán)意識,青島二中的學生記者在五四廣場隨機調(diào)查了120名市民,按他們的年齡分組:第1[20.30),第2[3040),第3[40,50),第4[50,60),第5[60,70),得到的頻率分布直方圖如圖所示.

1)若要從被調(diào)查的市民中選1人采訪,求被采訪人恰好在第2組或第5組的概率;

2)已知第1組市民中男性有2人,學生要從第1組中隨機抽取3名市民組成維權(quán)志愿者服務(wù)隊,求至少有兩名女性的概率.

查看答案和解析>>

同步練習冊答案