已知曲線(為參數(shù)),(為參數(shù)).
(1)化的方程為普通方程,并說明它們分別表示什么曲線;
(2)過曲線的左頂點(diǎn)且傾斜角為的直線交曲線于兩點(diǎn),求.
(1),曲線為圓心是,半徑是1的圓,曲線為中心是坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,長軸長是8,短軸長是6的橢圓;(2).
解析試題分析:本題考查參數(shù)方程與普通方程的互化,考查學(xué)生的轉(zhuǎn)化能力和計(jì)算能力.第一問,利用參數(shù)方程與普通方程的互化方法轉(zhuǎn)化方程,再根據(jù)曲線的標(biāo)準(zhǔn)方程判斷曲線的形狀;第二問,根據(jù)已知寫出直線的參數(shù)方程,與曲線聯(lián)立,根據(jù)韋達(dá)定理得到兩根之和兩根之積,再利用兩根之和兩根之積進(jìn)行轉(zhuǎn)化求出.
試題解析:⑴
曲線為圓心是,半徑是1的圓.
曲線為中心是坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,長軸長是8,短軸長是6的橢圓. 4分
⑵曲線的左頂點(diǎn)為,則直線的參數(shù)方程為(為參數(shù))
將其代入曲線整理可得:,設(shè)對應(yīng)參數(shù)分別為,
則
所以. 10分
考點(diǎn):1.參數(shù)方程與普通方程的互化;2.圓和橢圓的標(biāo)準(zhǔn)方程;3.韋達(dá)定理;4.直線的參數(shù)方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知拋物線的參數(shù)方程為(為參數(shù)),焦點(diǎn)為,準(zhǔn)線為,為拋物線上一點(diǎn),,為垂足,如果直線的斜率為,那么 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
過點(diǎn)P作傾斜角為α的直線與曲線x2+2y2=1交于點(diǎn)M、N,求|PM|·|PN|的最小值及相應(yīng)的α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C1: (t為參數(shù)),C2:
(θ為參數(shù)).
(1)化C1、C2的方程為普通方程,并說明它們分別表示什么曲線;
(2)若C1上的點(diǎn)P對應(yīng)的參數(shù)為t=,Q為C2上的動點(diǎn),求PQ中點(diǎn)M到直線C3: (t為參數(shù))距離的最小值.
解
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,是過定點(diǎn)且傾斜角為的直線;在極坐標(biāo)系(以坐標(biāo)原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸,取相同單位長度)中,曲線的極坐標(biāo)方程為.
(I)寫出直線的參數(shù)方程;并將曲線的方程化為直角坐標(biāo)方程;
(II)若曲線與直線相交于不同的兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(Ⅰ)將圓的參數(shù)方程化為普通方程,將圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)圓、是否相交,若相交,請求出公共弦的長;若不相交,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分)選修4 -4 :坐標(biāo)系與參數(shù)方程
將圓上各點(diǎn)的縱坐標(biāo)壓縮至原來的,所得曲線記作C;將直線3x-2y-8=0
繞原點(diǎn)逆時針旋轉(zhuǎn)90°所得直線記作l
.(I)求直線l與曲線C的方程;
(II)求C上的點(diǎn)到直線l的最大距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,若l:(t為參數(shù))過橢圓C:(φ為參數(shù))的右頂點(diǎn),求常數(shù)a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com