精英家教網 > 高中數學 > 題目詳情
如圖,在四棱錐P-ABCD中,底面ABCD中為菱形,∠BAD=60°,Q為AD的中點.
(1)若PA=PD,求證:平面PQB⊥平面PAD;
(2)點M在線段PC上,PM=tPC,試確定實數t的值,使得PA平面MQB.
(1)連BD,四邊形ABCD菱形∵AD=AB,∠BAD=60°
∴△ABD是正三角形,Q為 AD中點
∴AD⊥BQ
∵PA=PD,Q為 AD中點AD⊥PQ
又BQ∩PQ=Q∴AD⊥平面PQB,AD?平面PAD
∴平面PQB⊥平面PAD
(2)當t=
1
3
時,使得PA平面MQB,
連AC交BQ于N,交BD于O,
則O為BD的中點,又∵BQ為△ABD邊AD上中線,
∴N為正三角形ABD的中心,
令菱形ABCD的邊長為a,則AN=
3
3
a,AC=
3
a.
∴PA平面MQB,PA?平面PAC,平面PAC∩平面MQB=MN
∴PAMN
PM
PC
=
AN
AC
=
3
a
3
3
a
=
1
3
即:PM=
1
3
PC,t=
1
3

練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,在正三棱柱ABC-A1B1C1中,AB=AA1,D是CC1的中點,F是A1B的中點,
(1)求證:DF平面ABC;
(2)求證:AF⊥平面BDF.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,平面PAD⊥平面ABCD,ABCD為正方形,∠PAD=90°,且PA=AD,E、F分別是線段PA、CD的中點.
(Ⅰ)求證:PA⊥平面ABCD;
(Ⅱ)求EF和平面ABCD所成的角α;
(Ⅲ)求異面直線EF與BD所成的角β.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,棱柱ABC-A1B1C1的側面BCC1B1是菱形,B1C⊥A1B
(Ⅰ)證明:平面AB1C⊥平面A1BC1;
(Ⅱ)設D是A1C1上的點,且A1B平面B1CD,求A1D:DC1的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

底面是平行四邊形的四棱錐P-ABCD,E、F、G分別為AB、PC、DC的中點,
(1)求證:EF面PAD;
(2)若PA⊥平面ABCD,求證:面EFG⊥面ABCD.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,三棱柱A1B1C1-ABC的三視圖,主視圖和側視圖是全等的矩形,俯視圖是等腰直角三角形,點M是A1B1的中點.
(I)求證:B1C平面AC1M;
(II)求證:平面AC1M⊥平面AA1B1B.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖所示,四棱錐P-ABCD中,ABCD是矩形,三角形PAD為等腰直角三角形,∠APD=90°,面APD⊥面ABCD,AB=1,AD=2,E,F分別為PC和BD的中點.
(1)求證:EF平面PAD;
(2)證明:平面PAD⊥平面PDC;
(3)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在如圖所示的四棱錐P-ABCD中,已知PA⊥平面ABCD,ABDC,∠DAB=90°,PA=AD=DC=1,AB=2,M為PB的中點.
(1)求證:平面PAC⊥平面PBC;
(2)求二面角A-PB-C的平面角的正切值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

,則的最小值為         

查看答案和解析>>

同步練習冊答案