(本小題滿分14分)

如圖,ADB為半圓,AB為半圓直徑,O為半圓圓心,且OD⊥AB,Q為線段OD的中點(diǎn),已知|AB|=4,曲線C過Q點(diǎn),動(dòng)點(diǎn)P在曲線C上運(yùn)動(dòng)且保持|PA|+|PB|的值不變。

   (I)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線C的方程;

   (II)過點(diǎn)B的直線l與曲線C交于M、N兩點(diǎn),與OD所在直線交于E點(diǎn),

        為定值。

解:(Ⅰ)以AB、OD所在直線分別為x軸、y軸, O為原點(diǎn),建立平面直角坐標(biāo)系,∵動(dòng)點(diǎn)P在曲線C上運(yùn)動(dòng)且保持|PA|+|PB|的值不變.且點(diǎn)Q在曲線C上,

∴|PA|+|PB|=|QA|+|QB|=2>|AB|=4.

∴曲線C是為以原點(diǎn)為中心,A、B為焦點(diǎn)的橢圓.

設(shè)其長(zhǎng)半軸為a,短半軸為b,半焦距為c,則2a=2,∴a=,c=2,b=1.

∴曲線C的方程為+y2=1      6分

(Ⅱ)證法1:設(shè)點(diǎn)的坐標(biāo)分別為,

易知點(diǎn)的坐標(biāo)為.且點(diǎn)B在橢圓C內(nèi),故過點(diǎn)B的直線l必與橢圓C相交.

 ∵,∴

,.       10分

M點(diǎn)坐標(biāo)代入到橢圓方程中得:

去分母整理,得.  11分

同理,由可得:

.    12分

,是方程的兩個(gè)根,

.   14分

(Ⅱ)證法2:設(shè)點(diǎn)的坐標(biāo)分別為,

易知點(diǎn)的坐標(biāo)為.且點(diǎn)B在橢圓C內(nèi),故過點(diǎn)B的直線l必與橢圓C相交.

顯然直線  的斜率存在,設(shè)直線 的斜率為 ,則直線  的方程是

將直線  的方程代入到橢圓  的方程中,消去  并整理得

.   10分

.   11分

又 ∵, 則.∴

同理,由

. 12分

.       14分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡(jiǎn)f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時(shí),求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對(duì)一應(yīng)季商品過去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤(rùn);

(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊(cè)答案