【題目】已知函數(shù)).

(1)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍;

(2)若對(duì)任意的,都有成立,求實(shí)數(shù)的取值范圍.

【答案】(1);(2).

【解析】試題分析:(1)題意等價(jià)于關(guān)于的方程有正根,設(shè),根據(jù)二次函數(shù)的性質(zhì),對(duì)二次項(xiàng)系數(shù)進(jìn)行討論,分為三種情形進(jìn)行討論;(2)原題意等價(jià)于,分為時(shí),結(jié)合二次函數(shù)的性質(zhì)求結(jié)果.

試題解析:(1)由函數(shù)有零點(diǎn)得:關(guān)于的方程)有解

,則于是有,關(guān)于的方程有正根

設(shè),則函數(shù)的圖象恒過(guò)點(diǎn)且對(duì)稱(chēng)軸為

當(dāng)時(shí),的圖象開(kāi)口向下,故恰有一正數(shù)解

當(dāng)時(shí),,不合題意

當(dāng)時(shí),的圖象開(kāi)口向上,故有正數(shù)解的條件是

解得:

綜上可知,實(shí)數(shù)的取值范圍為.

(2)“對(duì)任意都有”即,

,故②變形為:

又當(dāng)時(shí),恒有,

故當(dāng)時(shí),,故不等式③恒成立

當(dāng)時(shí), ,當(dāng)且僅當(dāng)時(shí)取等號(hào)

,解得,綜上可知,實(shí)數(shù)的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)盒子中裝有5張編號(hào)依次為1、2、3、4、5的卡片,這5 張卡片除號(hào)碼外完全相同.現(xiàn)進(jìn)行有放回的連續(xù)抽取2 次,每次任意地取出一張卡片.

(1)求出所有可能結(jié)果數(shù),并列出所有可能結(jié)果;

(2)求事件“取出卡片號(hào)碼之和不小于7 或小于5”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若圖,在正方體中, 分別是的中點(diǎn).

(1)求證:平面平面;

(2)在棱上是存在一點(diǎn),使得平面,若存在,求的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)時(shí),求在區(qū)間上的最大值;

(2)若在區(qū)間上,函數(shù)的圖象恒在直線下方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是橢圓上任一點(diǎn),點(diǎn)到直線的距離為,到點(diǎn)的距離為,且.直線與橢圓交于不同兩點(diǎn)都在軸上方,且.

1求橢圓的方程;

2當(dāng)為橢圓與軸正半軸的交點(diǎn)時(shí),求直線方程;

3對(duì)于動(dòng)直線,是否存在一個(gè)定點(diǎn),無(wú)論如何變化,直線總經(jīng)過(guò)此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足:, ,其中.

(1)求數(shù)列的通項(xiàng)公式;

(2)記數(shù)列的前項(xiàng)和為,問(wèn)是否存在正整數(shù),使得成立?若存在,求的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足,且,

(Ⅰ)求證:數(shù)列是等比數(shù)列;

(Ⅱ)設(shè)是數(shù)列的前項(xiàng)和,若對(duì)任意的都成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)名著《續(xù)古摘奇算法》(楊輝)一書(shū)中有關(guān)于三階幻方的問(wèn)題:將1,2,3,4,5,6,7,8,9分別填入的方格中,使得每一行,每一列及對(duì)角線上的三個(gè)數(shù)的和都相等,我們規(guī)定:只要兩個(gè)幻方的對(duì)應(yīng)位置(如每行第一列的方格)中的數(shù)字不全相同,就稱(chēng)為不同的幻方,那么所有不同的三階幻方的個(gè)數(shù)是( )

8

3

4

1

5

9

6

7

2

A. 9 B. 8 C. 6 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知各項(xiàng)都是正數(shù)的數(shù)列的前項(xiàng)和為,,

1求數(shù)列的通項(xiàng)公式;

2設(shè)數(shù)列滿足:,,數(shù)列的前項(xiàng)和,求證:;

3對(duì)任意恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案