已知f(x)=x+的定義域為(0,+∞),且f(2)=2+,設P是函數(shù)圖象上的任一點,過P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問|PM|·|PN|是否為定值?若是,則求出該定值;若不是,請說明理由.
(3)設O為坐標原點,求四邊形OMPN面積的最小值.
科目:高中數(shù)學 來源:廣西桂林市2010屆高三第二次模擬考試數(shù)學文科試題 題型:013
已知f(x)=sin(x+)(>0)的圖像與x軸兩相鄰交點間的距離為,要得到y(tǒng)=f(x)的圖像只須把y=sin(x+)的圖像
向左平移個單位
向右平移個單位
向左平移個單位
向右平移個單位
查看答案和解析>>
科目:高中數(shù)學 來源:天津一中2008-2009年高三年級三月考數(shù)學試卷(理) 題型:044
已知f(x)=(x∈R),在區(qū)間[-1,1]上是增函數(shù).
(1)求實數(shù)a的值組成的集合A;
(2)設關于x的方程f(x)=的兩個非零實根為x1、x2,試問:是否存在實數(shù)m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年河北省高三8月月考理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.
(1)求f(x)的解析式;
(2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.
【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x
(2)中設切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6
然后利用g(x)=-2x3+6x2-6函數(shù)求導數(shù),判定單調性,從而得到要是有三解,則需要滿足-6<m<2
解:(1)f′(x)=3ax2+2bx+c
依題意
又f′(0)=-3
∴c=-3 ∴a=1 ∴f(x)=x3-3x
(2)設切點為(x0,x03-3x0),
∵f′(x)=3x2-3,∴f′(x0)=3x02-3
∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)
又切線過點A(2,m)
∴m-(x03-3x0)=(3x02-3)(2-x0)
∴m=-2x03+6x02-6
令g(x)=-2x3+6x2-6
則g′(x)=-6x2+12x=-6x(x-2)
由g′(x)=0得x=0或x=2
∴g(x)在(-∞,0)單調遞減,(0,2)單調遞增,(2,+∞)單調遞減.
∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2
畫出草圖知,當-6<m<2時,m=-2x3+6x2-6有三解,
所以m的取值范圍是(-6,2).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com