【題目】某小型水庫(kù)的管理部門為研究庫(kù)區(qū)水量的變化情況,決定安排兩個(gè)小組在同一年中各自獨(dú)立的進(jìn)行觀察研究.其中一個(gè)小組研究水源涵養(yǎng)情況.他們通過觀察入庫(kù)的若干小溪和降雨量等因素,隨機(jī)記錄了天的日入庫(kù)水量數(shù)據(jù)(單位:千),得到下面的柱狀圖(如圖甲).另一小組則研究由于放水、蒸發(fā)或滲漏造成的水量消失情況.他們通過觀察與水庫(kù)相連的特殊小池塘的水面下降情況來研究庫(kù)區(qū)水的整體消失量,隨機(jī)記錄了天的庫(kù)區(qū)日消失水量數(shù)據(jù)(單位:千),并將觀測(cè)數(shù)據(jù)整理成頻率分布直方圖(如圖乙).
(1)據(jù)此估計(jì)這一年中日消失水量的平均值;
(2)以頻率作為概率,試解決如下問題:
①分別估計(jì)日流入水量不少于千和日消失量不多于千的概率;
②試估計(jì)經(jīng)過一年后,該水庫(kù)的水量是增加了還是減少了,變化的量是多少?(一年按天計(jì)算),說明理由.
【答案】(1)23;(2)①日流入水量不少于千概率為,日消失量不多于千的概率;②減少了,理由詳見解析.
【解析】
(1)根據(jù)圖乙所給數(shù)據(jù),即可求得日消失水量的平均值,即可求得答案;
(2)①根據(jù)圖甲所給數(shù)據(jù),求得日流入水量不少于千的概率和日消失水量不多于千的概率. ②求得該湖區(qū)日進(jìn)水量的平均值為,結(jié)合已知,即可求得答案.
(1)根據(jù)圖乙,日消失水量的平均值為
(千)
(2)①根據(jù)圖甲可得,日流入水量不少于千的概率為
日消失水量不多于千的概率為:
②該湖區(qū)日進(jìn)水量的平均值為
(千)
一年后水庫(kù)的水減少了.
減少的量為(千)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 若命題均為真命題,則命題為真命題
B. “若,則”的否命題是“若”
C. 在,“”是“”的充要條件
D. 命題“”的否定為“”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓:的離心率為,過左焦點(diǎn)且斜率為的直線交橢圓于兩點(diǎn),線段的中點(diǎn)為,直線:交橢圓于兩點(diǎn).
(1)求橢圓的方程;
(2)求證:點(diǎn)在直線上;
(3)是否存在實(shí)數(shù),使得?若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟(jì)的發(fā)展和個(gè)人收入的提高,自2018年10月1日起,個(gè)人所得稅起征點(diǎn)和稅率依法進(jìn)行調(diào)整.調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減5000元后的余額為應(yīng)納稅所得額.依照個(gè)人所得稅稅率表,調(diào)整前后的計(jì)算方法如下表:
個(gè)人所得稅稅率表(調(diào)整前) | 個(gè)人所得稅稅率表(調(diào)整后) | ||||
免征額3500元 | 免征額5000元 | ||||
級(jí)數(shù) | 全月應(yīng)納稅所得額 | 稅率() | 級(jí)數(shù) | 全月應(yīng)納稅所得額 | 稅率() |
1 | 不超過1500元的部分 | 3 | 1 | 不超過3000元的部分 | 3 |
2 | 超過1500元至4500元的部分 | 10 | 2 | 超過3000元至12000元的部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 3 | 超過12000元至25000元的部分 | 20 |
… | … | … | … | … | … |
(1)假如小李某月的工資、薪金等所得稅前收入為7500元時(shí),請(qǐng)你幫小李算一下調(diào)整后小李的實(shí)際收入比調(diào)整前增加了多少?
(2)某稅務(wù)部門在小李所在公司利用分層抽樣方法抽取某月100個(gè)不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:
收入 (元) | ||||||
人數(shù) | 30 | 40 | 10 | 8 | 7 | 5 |
先從收入在及的人群中按分層抽樣抽取7人,再?gòu)闹羞x4人作為新納稅法知識(shí)宣講員,用表示抽到作為宣講員的收入在元的人數(shù),表示抽到作為宣講員的收入在元的人數(shù),隨機(jī)變量,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國(guó)家規(guī)定每年的月日以后的天為當(dāng)年的暑假.某鋼琴培訓(xùn)機(jī)構(gòu)對(duì)位鋼琴老師暑假一天的授課量進(jìn)行了統(tǒng)計(jì),如下表所示:
授課量(單位:小時(shí)) | |||||
頻數(shù) |
培訓(xùn)機(jī)構(gòu)專業(yè)人員統(tǒng)計(jì)近年該校每年暑假天的課時(shí)量情況如下表:
課時(shí)量(單位:天) | |||||
頻數(shù) |
(同組數(shù)據(jù)以這組數(shù)據(jù)的中間值作代表)
(1)估計(jì)位鋼琴老師一日的授課量的平均數(shù);
(2)若以(1)中確定的平均數(shù)作為上述一天的授課量.已知當(dāng)?shù)厥谡n價(jià)為元/小時(shí),每天的各類生活成本為元/天;若不授課,不計(jì)成本,請(qǐng)依據(jù)往年的統(tǒng)計(jì)數(shù)據(jù),估計(jì)一位鋼琴老師天暑假授課利潤(rùn)不少于萬元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左、右頂點(diǎn)分別為,,上頂點(diǎn)為,右焦點(diǎn)為,已知.
(1)證明:.
(2)已知直線的傾斜角為,設(shè)為橢圓上不同于,的一點(diǎn),為坐標(biāo)原點(diǎn),線段的垂直平分線交于點(diǎn),過且垂直于的直線交軸于點(diǎn),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知兩點(diǎn)分別為橢圓的右頂點(diǎn)和上頂點(diǎn),且,右準(zhǔn)線的方程為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線交橢圓于另一點(diǎn),交于點(diǎn).若以為直徑的圓經(jīng)過原點(diǎn),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=k(x+1)(k>0)與拋物線C相交于A,B兩點(diǎn),F為C的焦點(diǎn),若|FA|=2|FB|,則|FA| =( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同長(zhǎng)度單位建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程和曲線的普通方程;
(2)設(shè)射線與曲線交于不同于極點(diǎn)的點(diǎn),與曲線交于不同于極點(diǎn)的點(diǎn),求線段的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com