【題目】已知橢圓: 的上下兩個焦點(diǎn)分別為, ,過點(diǎn)與軸垂直的直線交橢圓于、兩點(diǎn), 的面積為,橢圓的離心力為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知為坐標(biāo)原點(diǎn),直線: 與軸交于點(diǎn),與橢圓交于, 兩個不同的點(diǎn),若存在實數(shù),使得,求的取值范圍.
【答案】(Ⅰ);(Ⅱ) .
【解析】(Ⅰ)根據(jù)題目條件,由橢圓焦點(diǎn)坐標(biāo)和對稱性計算的面積,建立等式關(guān)系,結(jié)合關(guān)系式,離心率計算公式,問題可得解;(Ⅱ)由題意,可分直線是否過原點(diǎn),對截距進(jìn)行分類討論,再利用橢圓對稱性、向量共線、直線與橢圓有交點(diǎn)等性質(zhì)、條件進(jìn)行運(yùn)算即可.
試題解析:(Ⅰ)根據(jù)已知橢圓的焦距為,當(dāng)時, ,
由題意的面積為,
由已知得,∴,∴,
∴橢圓的標(biāo)準(zhǔn)方程為.
(Ⅱ)若,則,由橢圓的對稱性得,即,
∴能使成立.
若,由,得,
因為, , 共線,所以,解得.
設(shè), ,由
得,
由已知得,即,
且, ,
由,得,即,∴,
∴,即.
當(dāng)時, 不成立,∴,
∵,∴,即,
∴,解得或.
綜上所述, 的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌汽車的店,對最近100份分期付款購車情況進(jìn)行統(tǒng)計,統(tǒng)計情況如下表所示.已知分9期付款的頻率為0.4;該店經(jīng)銷一輛該品牌汽車,若顧客分3期付款,其利潤為1萬元;分6期或9期付款,其利潤為2萬元;分12期付款,其利潤為3萬元.
付款方式 | 分3期 | 分6期 | 分9期 | 分12期 |
頻數(shù) | 20 | 20 |
(1)若以上表計算出的頻率近似替代概率,從該店采用分期付款購車的顧客(數(shù)量較大)中隨機(jī)抽取3為顧客,求事件:“至多有1位采用分6期付款“的概率;
(2)按分層抽樣方式從這100為顧客中抽取5人,再從抽取的5人中隨機(jī)抽取3人,記該店在這3人身上賺取的總利潤為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長軸長為, 為坐標(biāo)原點(diǎn).
(1)求橢圓的方程和離心率.
(2)設(shè)點(diǎn),動點(diǎn)在軸上,動點(diǎn)在橢圓上,且點(diǎn)在軸的右側(cè).若,求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩條不重合的直線和兩個不重合的平面,若,則下列四個命題:①若,則;②若,則; ③若,則;④若,則,其中正確命題的個數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ()的離心率為,以橢圓的四個頂點(diǎn)為頂點(diǎn)的四邊形的面積為8.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,斜率為的直線與橢圓交于, 兩點(diǎn),點(diǎn)在直線的左上方.若,且直線, 分別與軸交于, 點(diǎn),求線段的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,曲線的參數(shù)方程為為參數(shù)).
(1)直線過且與曲線相切,求直線的極坐標(biāo)方程;
(2)點(diǎn)與點(diǎn)關(guān)于軸對稱,求曲線上的點(diǎn)到點(diǎn)的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖象向左平移個單位,得函數(shù)的圖象(如圖) ,點(diǎn)分別是函數(shù)圖象上軸兩側(cè)相鄰的最高點(diǎn)和最低點(diǎn),設(shè),則的值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了選拔參加自行車比賽的選手,對自行車運(yùn)動員甲、乙兩人在相同條件下進(jìn)行了6次測試,測得他們的最大速度(單位:m/s)的數(shù)據(jù)如下:
甲 | 27 | 38 | 30 | 37 | 35 | 31 |
乙 | 33 | 29 | 38 | 34 | 28 | 36 |
(1)畫出莖葉圖,由莖葉圖你能獲得哪些信息;
(2)估計甲、乙兩運(yùn)動員的最大速度的平均數(shù)和方差,并判斷誰參加比賽更合適.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是等邊三角形,邊長為4, 邊的中點(diǎn)為,橢圓以, 為左、右兩焦點(diǎn),且經(jīng)過、兩點(diǎn)。
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)且軸不垂直的直線交橢圓于, 兩點(diǎn),求證:直線與的交點(diǎn)在一條定直線上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com