【題目】某工廠的檢驗(yàn)員為了檢測(cè)生產(chǎn)線上生產(chǎn)零件的情況,從產(chǎn)品中隨機(jī)抽取了個(gè)進(jìn)行測(cè)量,根據(jù)所測(cè)量的數(shù)據(jù)畫出頻率分布直方圖如下:

如果:尺寸數(shù)據(jù)在內(nèi)的零件為合格品,頻率作為概率.

(1)從產(chǎn)品中隨機(jī)抽取件,合格品的個(gè)數(shù)為,求的分布列與期望:

(2)為了提高產(chǎn)品合格率,現(xiàn)提出,兩種不同的改進(jìn)方案進(jìn)行試驗(yàn),若按方案進(jìn)行試驗(yàn)后,隨機(jī)抽取件產(chǎn)品,不合格個(gè)數(shù)的期望是:若按方案試驗(yàn)后,抽取件產(chǎn)品,不合格個(gè)數(shù)的期望是,你會(huì)選擇哪個(gè)改進(jìn)方案?

【答案】(1)詳見(jiàn)解析(2)應(yīng)選擇方案,詳見(jiàn)解析

【解析】

(1) 先由頻率分布直方圖,可以推出產(chǎn)品為合格品的概率,再求出隨機(jī)變量的分布列及期望;

(2) 方案隨機(jī)抽取產(chǎn)品與方案隨機(jī)抽取產(chǎn)品都為相互獨(dú)立事件,服從二項(xiàng)分布,由不合格個(gè)數(shù)的期望分別求出不合格的概率即可得出較好的方案.

(1)由直方圖可知抽出產(chǎn)品為合格品的率為

即推出產(chǎn)品為合格品的概率為,

從產(chǎn)品中隨機(jī)抽取件.合格品的個(gè)數(shù)的所有可能取值為0,1,2,3,4,

,,,

,.

所以的分布判為

的數(shù)學(xué)期望.

(2)方案隨機(jī)抽取產(chǎn)品不合格的概率是,隨機(jī)抽取件產(chǎn)品,不合格個(gè)數(shù)

方案隨機(jī)抽取產(chǎn)品不合格的概率是,隨機(jī)抽取件產(chǎn)品,不合格個(gè)數(shù)

依題意,

解得,

因?yàn)?/span>

所以應(yīng)選擇方案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】到2020年,我國(guó)將全面建立起新的高考制度,新高考采用模式,其中語(yǔ)文、數(shù)學(xué)、英語(yǔ)三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣、愛(ài)好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門科目中自選3門(6選3)參加考試,滿分各100分.為了順利迎接新高考改革,某學(xué)校采用分層抽樣的方法從高一年級(jí)1000名(其中男生550名,女生450名)學(xué)生中抽取了名學(xué)生進(jìn)行調(diào)查.

(1)已知抽取的名學(xué)生中有女生45名,求的值及抽取的男生的人數(shù).

(2)該校計(jì)劃在高一上學(xué)期開設(shè)選修中的“物理”和“地理”兩個(gè)科目,為了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)在(1)的條件下抽取到的名學(xué)生進(jìn)行問(wèn)卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目,且只能選擇一個(gè)科目),得到如下列聯(lián)表.

選擇“物理”

選擇“地理”

總計(jì)

男生

10

女生

25

總計(jì)

(i)請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有以上的把握認(rèn)為選擇科目與性別有關(guān)系.

(ii)在抽取的選擇“地理”的學(xué)生中按性別分層抽樣抽取6名,再?gòu)倪@6名學(xué)生中抽取2名,求這2名中至少有1名男生的概率.

附:,其中.

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】十九大提出,堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位為幫助定點(diǎn)扶貧村真脫貧,堅(jiān)持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進(jìn)行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機(jī)摘下了個(gè)蜜柚進(jìn)行測(cè)重,其質(zhì)量分別在,,,(單位:克)中,其頻率分布直方圖如圖所示,

(Ⅰ)已經(jīng)按分層抽樣的方法從質(zhì)量落在,的蜜柚中抽取了個(gè),現(xiàn)從這個(gè)蜜柚中隨機(jī)抽取個(gè)。求這個(gè)蜜柚質(zhì)量均小于克的概率:

(Ⅱ)以各組數(shù)據(jù)的中間值代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有個(gè)蜜柚等待出售,某電商提出了兩種收購(gòu)方案:

方案一:所有蜜柚均以元/千克收購(gòu);

方案二:低于克的蜜柚以元/個(gè)收購(gòu),高于或等于克的以元/個(gè)收購(gòu).

請(qǐng)你通過(guò)計(jì)算為該村選擇收益最好的方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求證:恒成立;

(2)若關(guān)于的方程至少有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,底面為平行四邊形,平面平面,是邊長(zhǎng)為4的等邊三角形,,的中點(diǎn).

(1)求證:;

(2)若直線與平面所成角的正弦值為,求平面 與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中裝有除顏色外形狀大小完全相同的6個(gè)小球,其中有4個(gè)編號(hào)為1,2, 3, 4的紅球,2個(gè)編號(hào)為A、B的黑球,現(xiàn)從中任取2個(gè)小球.;

(1)求所取2個(gè)小球都是紅球的概率;

(2)求所取的2個(gè)小球顏色不相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一汽車廠生產(chǎn)三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩種型號(hào),某月的產(chǎn)量如表(單位:輛):

轎車

轎車

轎車

舒適型

100

150

標(biāo)準(zhǔn)型

300

450

600

按分層抽樣的方法在這個(gè)月生產(chǎn)的轎車中抽取50輛,其中有類轎車10.

1)求的值;

2)用隨機(jī)抽樣的方法從類舒適型轎車中抽取8輛,經(jīng)檢測(cè)它們的得分如下:48.6、9.2、9.6、8.7、9.39.0、8.2,把這8輛轎車的得分看作一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對(duì)值不超過(guò)0.5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓錐(其中為頂點(diǎn),為底面圓心)的側(cè)面積與底面積的比是,則圓錐與它的外接球(即頂點(diǎn)在球面上且底面圓周也在球面上)的體積比為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線,(為參數(shù)),將曲線上的所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的,縱坐標(biāo)縮短為原來(lái)的后得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為。

1)求曲線的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;

2)設(shè)直線l與曲線交于不同的兩點(diǎn)A,B,點(diǎn)M為拋物線的焦點(diǎn),求的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案