精英家教網 > 高中數學 > 題目詳情

如圖所示,已知直三棱柱ABC—A1B1C1中,△ABC為等腰直角三角形,

∠BAC=90°,且AB=AA1,D、E、F分別為B1A、C1C、BC的中點.

求證:

(1)DE∥平面ABC;

(2)B1F⊥平面AEF.

證明略


解析:

  方法一  如圖建立空間直角坐標系A—xyz,

令AB=AA1=4,

則A(0,0,0),E(0,4,2),F(2,2,0),B(4,0,0),B1(4,0,4).

(1)取AB中點為N,則N(2,0,0),C(0,4,0),D(2,0,2),                3分

=(-2,4,0),=(-2,4,0),

=,                                                                                     4分

∴DE∥NC,又NC平面ABC,DE平面ABC.

故DE∥平面ABC.                                                                                           6分

(2)=(-2,2,-4),

=(2,-2,-2),=(2,2,0).

·=(-2)×2+2×(-2)+(-4)×(-2)=0,

,∴B1F⊥EF,                                                                           10分

·=(-2)×2+2×2+(-4)×0=0.

,即B1F⊥AF,                                                                           12分

又∵AF∩FE=F,∴B1F⊥平面AEF.                                                          14分

方法二  (1)連接A1B、A1E,并延長A1E交AC的延長線于點P,連接BP.由E為C1C的中點且A1C1∥CP,可證A1E=EP.

∵D、E分別是A1B、A1P的中點,

所以DE∥BP.                                                               4分

又∵BP平面ABC,

DE平面ABC,

∴DE∥平面ABC.                                                         6分

(2)∵△ABC為等腰三角形,F為BC的中點,

∴BC⊥AF,                                                                 8分

又∵B1B⊥AF,B1B∩BC=B,∴AF⊥平面B1BF,

而B1F平面B1BF,

∴AF⊥B1F.                                                                  10分

設AB=A1A=a,

則B1F2=a2,EF2=a2

B1E2=a2,

∴B1F2+EF2=B1E2,B1F⊥FE.                                               12分

又AF∩FE=F,綜上知B1F⊥平面AEF.                                14分

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖所示,已知直三棱柱ABC-A′B′C′,AC=AB=AA′=2,AC,AB,AA′兩兩垂直,E,F,H分別是AC,AB,BC的中點,
(I)證明:EF⊥AH;    
(II)求四面體E-FAH的體積.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年陜西省寶雞市高三教學質量檢測(三)理科數學試卷(解析版) 題型:解答題

如圖所示,已知直三棱柱ABC–A′B′C′,AC =AB =AA,=2,AC,AB,AA′兩兩垂直,  E,F,H分別是AC,AB,BC的中點, 

(I)證明:EF⊥AH;   

   (II)求平面EFC與平面BB′C′所成夾角的余弦值.

 

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,已知直三棱柱ABC—A1B1C1中,B1C1=A1C1,A1B⊥AC1.求證:A1B⊥B1C.

查看答案和解析>>

科目:高中數學 來源:2012年陜西省寶雞市高三教學質量檢測數學試卷3(文科)(解析版) 題型:解答題

如圖所示,已知直三棱柱ABC-A′B′C′,AC=AB=AA′=2,AC,AB,AA′兩兩垂直,E,F,H分別是AC,AB,BC的中點,
(I)證明:EF⊥AH;    
(II)求四面體E-FAH的體積.

查看答案和解析>>

同步練習冊答案