【題目】已知函數(shù)f(x)=aln(x+1)﹣x2在區(qū)間(0,1)內(nèi)任取兩個(gè)實(shí)數(shù)p,q,且p≠q,不等式 恒成立,則實(shí)數(shù)a的取值范圍為( )
A.[15,+∞)
B.
C.[1,+∞)
D.[6,+∞)
【答案】A
【解析】解:∵f(x)=aln(x+1)﹣x2,
∴f(x+1)=aln(x+2)﹣(x+1)2,
又p,q∈(0,1),且p≠q,不等式 恒成立 恒成立,
即f′(x+1)= ﹣2(x+1)>1恒成立,其中x∈(0,1).
整理得:a>[1+2(x+1)](x+2)恒成立,x∈(0,1).
令h(x)=[1+2(x+1)](x+2),
則a>[h(x)]max,x∈(0,1).
∵h(yuǎn)(x)=2x2+7x+6,其對(duì)稱軸方程為x=﹣ ,h(x)在區(qū)間(0,1)上單調(diào)遞增,
∴當(dāng)x→1時(shí),h(x)→15,
∴a≥15,即實(shí)數(shù)a的取值范圍為[15,+∞),
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)前,網(wǎng)購(gòu)已成為現(xiàn)代大學(xué)生的時(shí)尚。某大學(xué)學(xué)生宿舍4人參加網(wǎng)購(gòu),約定:每個(gè)人通過(guò)擲一枚質(zhì)地均勻的骰子決定自己去哪家購(gòu)物,擲出點(diǎn)數(shù)為5或6的人去淘寶網(wǎng)購(gòu)物,擲出點(diǎn)數(shù)小于5的人去京東商城購(gòu)物,且參加者必須從淘寶網(wǎng)和京東商城選擇一家購(gòu)物.
(1)求這4個(gè)人中恰有1人去淘寶網(wǎng)購(gòu)物的概率;
(2)用分別表示這4個(gè)人中去淘寶網(wǎng)和京東商城購(gòu)物的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人要對(duì)C處進(jìn)行考察,甲在A處,乙在B處,基地在O處,此時(shí)∠AOB=90°,測(cè)得|AC|=5 km,|BC|=km,|AO|=|BO|=2 km,如圖所示,試問(wèn)甲、乙兩人應(yīng)以什么方向走,才能使兩人的行程之和最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐ABCD中,AB=AC=BD=CD=3,AD=BC=2,點(diǎn)M,N分別為AD,BC的中點(diǎn),則異面直線AN,CM所成的角的余弦值是( )
A.
B.﹣
C.﹣
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)定義域?yàn)?/span>若在上單調(diào)遞減,則稱為函數(shù)的峰點(diǎn), 為含峰函數(shù).(特別地,若在上單調(diào)遞增或遞減,則峰點(diǎn)為1或0).
對(duì)于不易直接求出峰點(diǎn)的含峰函數(shù),可通過(guò)做試驗(yàn)的方法給出的近似值,試驗(yàn)原理為:“對(duì)任意的若則為含峰區(qū)間,此時(shí)稱為近似峰點(diǎn);若則為含峰區(qū)間,此時(shí)稱為近似峰點(diǎn)”.
我們把近似峰點(diǎn)與之間可能出現(xiàn)的最大距離稱為試驗(yàn)的“預(yù)計(jì)誤差”,記為,其值為其中表示中較大的數(shù)
(Ⅰ)若求此試驗(yàn)的預(yù)計(jì)誤差;
(Ⅱ)如何選取才能使這個(gè)試驗(yàn)方案的預(yù)計(jì)誤差達(dá)到最小?并證明你的結(jié)論(只證明的取值即可).
(Ⅲ)選取可以確定含峰區(qū)間為或在所得的含峰區(qū)間內(nèi)選取,由與或與類似地可以進(jìn)一步得到一個(gè)新的預(yù)計(jì)誤差.分別求出當(dāng)和時(shí)預(yù)計(jì)誤差的最小值.(本問(wèn)只寫(xiě)結(jié)果,不必證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E是PD的中點(diǎn).
(1)證明:PB∥平面AEC;
(2)設(shè)AP=1,AD= ,三棱錐P﹣ABD的體積V= ,求A到平面PBC的距離.
(3)在(2)的條件下求直線AP與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)= (a<0)的定義域?yàn)镈,若所有點(diǎn)(s,f(t)(s,t∈D)構(gòu)成一個(gè)正方形區(qū)域,則a的值為( )
A.﹣2
B.﹣4
C.﹣8
D.不能確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)橢圓C1: =1(a>b>0),長(zhǎng)軸的右端點(diǎn)與拋物線C2:y2=8x的焦點(diǎn)F重合,且橢圓C1的離心率是 .
(1)求橢圓C1的標(biāo)準(zhǔn)方程;
(2)過(guò)F作直線l交拋物線C2于A,B兩點(diǎn),過(guò)F且與直線l垂直的直線交橢圓C1于另一點(diǎn)C,求△ABC面積的最小值,以及取到最小值時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】斜棱柱ABC﹣A1B1C1中,側(cè)面AA1C1C⊥面ABC,側(cè)面AA1C1C為菱形,∠A1AC=60°,E,F(xiàn)分別為A1C1和AB的中點(diǎn).
(1)求證:平面CEF⊥平面ABC;
(2)若三棱柱的所有棱長(zhǎng)為2,求三棱柱F﹣ECB的體積;
(3)D為棱BC上一點(diǎn),若C1D∥EF,請(qǐng)確定點(diǎn)D位置,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com