【題目】甲、乙兩臺機床同時生產(chǎn)一種零件,其質(zhì)量按測試指標劃分:指標大于或等于100為優(yōu)品,大于等于90且小于100為合格品,小于90為次品,現(xiàn)隨機抽取這兩臺機床生產(chǎn)的零件各100件進行檢測,檢測結(jié)果統(tǒng)計如下:
測試指標 | [85,90) | [90,95) | [95,100) | [100,105) | [105,110) |
甲機床 | 8 | 12 | 40 | 32 | 8 |
乙機床 | 7 | 18 | 40 | 29 | 6 |
(1)試分別估計甲機床、乙機床生產(chǎn)的零件為優(yōu)品的概率;
(2)甲機床生產(chǎn)1件零件,若是優(yōu)品可盈利160元,合格品可盈利100元,次品則虧損20元,假設(shè)甲機床某天生產(chǎn)50件零件,請估計甲機床該天的利潤(單位:元);
(3)從甲、乙機床生產(chǎn)的零件指標在[90,95)內(nèi)的零件中,采用分層抽樣的方法抽取5件,從這5件中任意抽取2件進行質(zhì)量分析,求這2件都是乙機床生產(chǎn)的概率.
【答案】(1);(2)5720元;(3)
【解析】
(1)直接利用頻率公式求甲機床、乙機床生產(chǎn)的零件為優(yōu)品的頻率,用頻率估計概率;
(2)先計算出甲機床生產(chǎn)的零件每件的平均利潤,再估計甲機床該天的利潤;
(3)利用古典概型的概率公式求這2件都是乙機床生產(chǎn)的概率.
(1)因為甲機床生產(chǎn)的零件為優(yōu)品的頻率,
乙機床生產(chǎn)的零件為優(yōu)品的頻率為,
所以用頻率估計概率,估計甲機床、乙機床生產(chǎn)的零件為優(yōu)品的概率分別為.
(2)甲機床生產(chǎn)的零件每件的平均利潤為(元),
所以估計甲機床生產(chǎn)的產(chǎn)品每件的利潤為114.4元,
所以甲機床該天生產(chǎn)50件零件的利潤為(元).
(3)由題意知,甲機床應(yīng)抽取(件),乙機床應(yīng)抽取(件),
記甲機床生產(chǎn)的2件零件為A,B,乙機床生產(chǎn)的3件零件為,
若從5件中任意抽取2件,有,共10個樣本點,
其中2件都是乙機床生產(chǎn)的有,共3個樣本點.
所以,從這5件中任意抽取2件,這2件都是乙機床生產(chǎn)的概率.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在區(qū)間上的函數(shù)的圖象關(guān)于直線對稱,當時,.
(1)作出的圖象;
(2)求的解析式;
(3)若關(guān)于x的方程有解,將方程所有解的和記作M,結(jié)合(1)中的圖象,求M的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點為,右頂點為,上頂點為,,(為坐標原點).
(1)求橢圓的方程;
(2)定義:曲線在點處的切線方程為.若拋物線上存在點(不與原點重合)處的切線交橢圓于、兩點,線段的中點為.直線與過點且平行于軸的直線的交點為,證明:點必在定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】節(jié)能減排以來,蘭州市100戶居民的月平均用電量單位:度,以分組的頻率分布直方圖如圖.
求直方圖中x的值;求月平均用電量的眾數(shù)和中位數(shù);
估計用電量落在中的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明某天偶然發(fā)現(xiàn)班上男同學(xué)比女同學(xué)更喜歡做幾何題,為了驗證這一現(xiàn)象是否具有普遍性,他決定在學(xué)校開展調(diào)查研究:他在全校3000名同學(xué)中隨機抽取了50名,給這50名同學(xué)同等難度的幾何題和代數(shù)題各一道,讓同學(xué)們自由選擇其中一道題作答,選題人數(shù)如下表所示,但因不小心將部分數(shù)據(jù)損毀,只是記得女生選擇幾何題的頻率是.
幾何題 | 代數(shù)題 | 合計 | |
男同學(xué) | 22 | 8 | 30 |
女同學(xué) | |||
合計 |
(1)根據(jù)題目信息補全上表;
(2)能否根據(jù)這個調(diào)查數(shù)據(jù)判斷有的把握認為選代數(shù)題還是幾何題與性別有關(guān)?
參考數(shù)據(jù)和公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | p>5.024 | 6.635 | 7.879 |
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某球迷為了解兩支球隊的攻擊能力,從本賽季常規(guī)賽中隨機調(diào)查了20場與這兩支球隊有關(guān)的比賽.兩隊所得分數(shù)分別如下:
球隊:122 110 105 105 109 101 107 129 115 100
114 118 118 104 93 120 96 102 105 83
球隊:114 114 110 108 103 117 93 124 75 106
91 81 107 112 107 101 106 120 107 79
(1)根據(jù)兩組數(shù)據(jù)完成兩隊所得分數(shù)的莖葉圖,并通過莖葉圖比較兩支球隊所得分數(shù)的平均值及分散程度(不要求計算出具體值,得出結(jié)論即可);
(2)根據(jù)球隊所得分數(shù),將球隊的攻擊能力從低到高分為三個等級:
球隊所得分數(shù) | 低于100分 | 100分到119分 | 不低于120分 |
攻擊能力等級 | 較弱 | 較強 | 很強 |
記事件“球隊的攻擊能力等級高于球隊的攻擊能力等級”.假設(shè)兩支球隊的攻擊能力相互獨立. 根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若在上是單調(diào)增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
若是函數(shù)的極值點,求曲線在點處的切線方程;
若函數(shù)在區(qū)間上為單調(diào)遞減函數(shù),求實數(shù)a的取值范圍;
設(shè)m,n為正實數(shù),且,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com